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Chapter 1

Introduction

The purpose of this thesis is to present two characteristic-curve finite element

schemes for the incompressible Navier-Stokes equations and to show two- and

three-dimensional numerical results in order to see the advantages of the schemes.

In devising the numerical schemes for the Navier-Stokes equations, a key is-

sue is how to approximate the nonlinear convection term. It is well known that the

conventional Galerkin method causes severe oscillating results for high Reynolds

number problems. To deal with this phenomenon, many kinds of approxima-

tions have been developed based on ideas such as upwinding, balancing tensor

diffusivity, streamline diffusion, least square, characteristic-curve and so on. (See

Baba and Tabata [1], Boukir et al. [3], Brooks and Hughes [5], Douglas Jr. and

Russell [10], Franca and Frey [11], Franca and Stenberg [12], Fujima et al. [14],

Gresho et al. [15], Hansbo and Johnson [18], Hughes et al. [19, 20], Hughes and

Tezduyar [21], Johnson [22], Le Beau et al. [23], Kondo et al. [26], Pironneau

[33, 34], Pironneau et al. [35], Süli [38], Tabata [39], Tabata and Fujima [42],

Tezduyar [47] and references therein.)

We focus on characteristic-curve method. The method is based on an ap-

proximation of the material derivative along the trajectory of the fluid particle,

and is natural from the physical point of view. From this the method seems to

be considered as one of the upwind type methods. Moreover, the matrix for
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the system of linear equations is symmetric and identical, which enables us to

use symmetric linear solvers. Characteristic-curve finite element schemes for the

Navier-Stokes equations of first order in time have been developed and analyzed

in Pironneau [33, 34] and S̈uli [38]. A scheme of second order in time has been

presented and analyzed in Boukir et al. [3]. They use two-step method and ap-

proximate the material derivative by the values of two previous steps along the

trajectory. These characteristic-curve finite element schemes impose the inf-sup

condition [4, 7, 17] for the finite elements to be used.

One of the characteristic-curve schemes to be presented in this thesis is of sec-

ond order in time and of single-step. The scheme has been proposed in the author

and Tabata [32]. The material derivative is approximated in the Crank-Nicolson

way along the trajectory. The original idea of the approximation has been de-

veloped in Rui and Tabata [36] for the convection-diffusion equations, which is

extended to the Navier-Stokes equations in this thesis. As is pointed out in [36], in

the Crank-Nicolson approximation on the trajectory, an additional correction term

is indispensable to realize a second order accuracy. After supplying a correction

term for the Navier-Stokes equations, the scheme is proved to be of second order

in time. In the case of the Navier-Stokes equations the velocity is unknown and

the obtained scheme becomes nonlinear. For the solution we present an internal

iteration procedure which consists of solving a series of Stokes type equations.

The scheme has such advantages that it is of second order in time and that every

matrix to be treated is symmetric and identical. We present the numerical results

in 2D to recognize the second order accuracy in time.

The other scheme does not impose the inf-sup condition and employs P1/P1

element, i.e., velocity and pressure are both approximated by the piecewise linear

elements in triangles (2D) or tetrahedra (3D), which requires small memory to

compute and leads to easy three-dimensional computation. The scheme keeps

symmetry of the matrix for the system of linear equations. Since P1/P1 element

does not satisfy the inf-sup condition, a pressure-stabilized method in Brezzi and
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Douglas Jr. [6] is used. The scheme is an implicit and mixed one, and has such

advantages that the matrix is symmetric and identical and that it is useful for large

scale computation. We call the scheme a pressure-stabilized characteristic-curve

finite element scheme, which has been developed in the author and Tabata [31]

and applied to cavity flow problems in the author [30]. The numerical results in

2D and 3D are presented, and the problems consist of test problems and cavity

flow problems. Test problems are set to see the convergence rate of the scheme to

the exact solution. Applicability of the scheme for practical problems is checked

by cavity flow problems, whose Reynolds number is up to 5,000 in 2D and 1,000

in 3D.

In the cavity flow problems we set discontinuous,C0 andC1 continuous Dirich-

let boundary conditions. The classical cavity flow problem, whose Dirichlet bound-

ary condition is given by a discontinuous function on the boundary, is well known

as a benchmark one for incompressible fluid flows. Many authors solve the prob-

lem, such as Cruchaga and Oñate [9], Ghia et al. [16], Kondo et al. [26], Nal-

lasamy and Prasad [29], Tabata and Fujima [42] in 2D, Fujima et al. [14], Iwatsu

et al. [24], Jiang et al. [25], Ku et al. [27] in 3D, and so on. We compute the

problem in 2D too. We have some doubt on solving the classical cavity flow prob-

lem, because the problem has no weak solution. Therefore, we also compute two

other cavity flow problems in 2D and 3D, which are regularized byC0 andC1

continuous functions to be used for the Dirichlet boundary condition.

The contents of this thesis are as follows. In Chapter 2 the Navier-Stokes

problem is set. The characteristic-curve method is introduced in Chapter 3. In

Chapter 4, we consider numerical integration for characteristic-curve finite ele-

ment schemes. Chapter 5 is devoted to a single-step characteristic-curve finite

element scheme of second order in time. In Chapter 6, we review two stabilized

methods for the stationary Stokes equations. In Chapter 7 a pressure-stabilized

characteristic-curve finite element scheme is studied. In the last chapter we give

conclusions of the thesis.
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Chapter 2

The Navier-Stokes equations

In this chapter we set the Navier-Stokes problem and review a scheme. After

preparing function spaces and notations in Section 2.1, the Navier-Stokes problem

is set in Section 2.2. In Section 2.3 we review a scheme based on the conventional

Galerkin method.

2.1 Preliminaries

In this section we introduce function spaces and notations to be used in this thesis.

Fundamentals of functional analysis

Let N andR be the sets of positive integers and real numbers, respectively, and

N0 ≡ N∪{0}. For any normed spaceX, the norm is denoted by∥ · ∥X, and for

any inner product spaceX, (·, ·)X means the inner product. LetX andY be real

normed spaces. A mappingA : X →Y is a linear operator provided

A(c1x1 +c2x2) = c1Ax1 +c2Ax2, ∀x1, x2 ∈ X, ∀c1, c2 ∈ R.

WhenY = R, A is called a linear functional. A linear operatorA : X → Y is

continuous if there exists a constantC such that

∥Ax∥Y ≤C∥x∥X, ∀x∈ X.
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Let L (X,Y) be the set of continuous linear operators fromX to Y. If Y is a

Banach space, the setL (X,Y) is a Banach space with the norm

∥A∥L (X,Y) ≡ sup
x∈X,
x̸=0

∥Ax∥Y

∥x∥X
.

We denote byX′ ≡ L (X,R) the dual space ofX and by⟨·, ·⟩ the dual pairing

betweenX andX′.

We say that a mappingb(·, ·) : X×Y → R is a bilinear form providedb(c1x1 +c2x2, y) = c1b(x1,y)+c2b(x2,y), ∀x1,x2 ∈ X, ∀y∈Y, ∀c1,c2 ∈ R,

b(x, c1y1 +c2y2) = c1b(x,y1)+c2b(x,y2), ∀x∈ X, ∀y1,y2 ∈Y, ∀c1,c2 ∈ R.

A bilinear formb(·, ·) on X×Y is said to be continuous if there exists a constant

C such that

|b(x,y)| ≤C∥x∥X∥y∥Y, ∀(x,y) ∈ X×Y.

Let Z be a real normed space. A continuous trilinear form onX×Y×Z is defined

similarly.

Sobolev spaces

Ford = 2 or 3, letΩ be a bounded domain inRd with a piecewise smooth bound-

aryΓ ≡ ∂Ω , andn= (n1, · · · ,nd)T be a unit outward normal toΓ (see Figure 2.1),

where the superscriptT means to transpose. For a real numberp (1≤ p≤ +∞),

let Lp(Ω) be the space ofp-th power summable functions onΩ ,

Lp(Ω) ≡
{

φ : Ω → R; φ is Lebesgue measurable, ∥φ∥Lp(Ω) < +∞
}
,

where

∥φ∥Lp(Ω) ≡


{∫

Ω
|φ(x)|p dx

}1/p

(1≤ p < +∞),

ess.sup
{
|φ(x)|; x∈ Ω

}
(p = +∞),

and for real-valued and Lebesgue measurable functionf ,

ess.sup
{

f (x); x∈ Ω
}
≡ inf

{
µ ∈ R; meas{x∈ Ω ; f (x) > µ} = 0

}
.
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Figure 2.1: The domainΩ and its boundaryΓ .

We set the space of test functions onΩ ,

D(Ω) ≡C∞
0 (Ω) ≡ {φ ∈C∞(Ω); supp[φ ] is compact inΩ},

where supp[φ ] is the support ofφ ,

supp[φ ] ≡ {x∈ Ω ; φ(x) ̸= 0}.

Let L1
loc(Ω) be the space of locally summable functions,

L1
loc(Ω) ≡

{
φ : Ω → R; φ ∈ L1(K), ∀K : compact inΩ

}
.

We call a vector of the formα = (α1, · · · , αd) ∈ Nd
0 a multi-index of order

|α| ≡
d

∑
i=1

αi ,

andDα means a differential operator,

Dα ≡
d

∏
i=1

( ∂
∂xi

)αi
.

Definition 2.1. A mapping T: D(Ω) → R is called a distribution if T satisfies

the following two properties,

13



• Linearity

⟨T, c1ϕ1+c2ϕ2⟩= c1⟨T,ϕ1⟩+c2⟨T,ϕ2⟩, ∀ϕ1, ϕ2 ∈D(Ω), ∀c1, c2 ∈ R,

• Continuity

For any sequence{ϕ j}∞
j=1 ⊂ D(Ω), which satisfies

· ∃K ⊂ Ω : compact set s.t. ∀ j, supp[ϕ j ] ⊂ K,

· ∀α : multi-index, max
x∈K

|Dαϕ j(x)| → 0 ( j → ∞),

it holds that

⟨T,ϕ j⟩ → 0 ( j → ∞).

We denote the set of distributions byD ′(Ω).

Lemma 2.1. Suppose that f∈ L1
loc(Ω) and thatα ∈ Nd

0 is any multi-index. Then

there exists a distribution Dα f ∈ D ′(Ω) defined by

⟨Dα f ,ϕ⟩ ≡ (−1)|α |
∫

Ω
f (x)Dαϕ(x) dx, ∀ϕ ∈ D(Ω).

Dα f is called a derivative of f in the sense of distribution.

If functions f , g∈ L1
loc(Ω) satisfy

⟨Dα f ,ϕ⟩ =
∫

Ω
g(x)ϕ(x) dx, ∀ϕ ∈ D(Ω),

then, we writeDα f = g.

For a real numberp (1 ≤ p ≤ +∞) and an integerk ∈ N0, we define the

Sobolev spaceWk,p(Ω) by

Wk,p(Ω) ≡
{

φ : Ω → R; Dαφ ∈ Lp(Ω), |α| ≤ k
}
,

with the norm,

∥φ∥Wk,p(Ω) ≡


{ k

∑
j=0

|φ |pW j,p(Ω)

}1/p

(1≤ p < +∞),

max
{
|φ |W j,∞(Ω); 0≤ j ≤ k

}
(p = +∞),
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where|φ |W j,p(Ω) is a seminorm,

|φ |W j,p(Ω) ≡


{

∑
|α |= j

∥Dαφ∥p
Lp(Ω)

}1/p

(1≤ p < +∞),

max
{
∥Dαφ∥L∞(Ω); |α| = j

}
(p = +∞).

If p = 2, we usually write

Hk(Ω) ≡Wk,2(Ω),

for k = 0, 1, 2, · · · . Note thatH0(Ω) = L2(Ω). Hk(Ω) is a Hilbert space with

the inner product,

( f ,g)Hk(Ω) ≡ ∑
|α|≤k

∫
Ω

Dα f Dαg dx.

We introduce another Hilbert spaceL2
0(Ω) defined by

L2
0(Ω) ≡

{
φ ∈ L2(Ω);

∫
Ω

φ dx= 0
}
.

Let g : Γ ×(0, T)→Rd be a function. Throughout the thesis, we use the following

notations,

X ≡ H1(Ω)d, M ≡ L2(Ω),

V(g(t)) ≡
{

v∈ X; v = g(·, t) onΓ
}
,

V ≡ V(0) (= H1
0(Ω)d),

Q≡ L2
0(Ω).

The partial derivative∂φ/∂xi of a functionφ is denoted byφ,i and the Einstein

conventionaibi is used in place of∑d
i=1aibi . We define a differential operator∇

by

∇ ≡
( ∂

∂x1
, · · · , ∂

∂xd

)T
.

Let p(1≤ p≤ ∞) be a real number. The gradient off ∈W1,p(Ω) is written as

∇ f =
( ∂ f

∂x1
, · · · , ∂ f

∂xd

)T
=

(
f,1, · · · , f,d

)T
∈ Lp(Ω)d,
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Let X andY be sets, e.g.,X = Y = R. For vectorsa ∈ Xd and b ∈ Yd, a · b
represents

a·b≡ aibi =
d

∑
i=1

aibi .

By the above notations, for a functionv∈W1,p(Ω)d, we have

∇ ·v = vi,i =
d

∑
i=1

∂vi

∂xi
∈ Lp(Ω),

which is the divergence ofv.

Trace operator

Let Lp(Γ ) be the space ofp-th power summable functions onΓ . From the

smoothness ofΓ , there exists a trace operatorγ ∈L (W1,p(Ω),Lp(Ω)) [4, 8, 40].

For v∈ W1,p(Ω), γv is simply denoted byv, if there is no confusion. We define

the function spaceH1
0(Ω) by

H1
0(Ω) ≡

{
φ ∈ H1(Ω); γv = 0

}
.

The following formula of integration by parts is often used in this thesis.

Theorem 2.1(Gauss-Green). Let f ∈ W1,p(Ω) and g∈ W1,q(Ω), where1/p+

1/q = 1 and1≤ p≤ +∞. Then it holds that, for i= 1, · · · ,d,∫
Ω

f,i g dx= −
∫

Ω
f g,i dx+

∫
Γ

f gni ds. (2.1)

Notations

We introduce additional useful notations. Fori, j ∈N, let δi j be Kronecker’s delta

defined by

δi j ≡

1 (i = j)

0 (otherwise)
.
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Ω andd are often omitted from subscript of norms, e.g.,∥ · ∥H1(Ω)d is denoted by

∥ · ∥H1. WhenX = L2(Ω), L2(Ω)d or L2(Ω)d×d, we often omit the subscriptX

from the notations(·, ·)X and∥ · ∥X.

Let ∆t be a time increment andT be a positive constant. We use two types

of time subdivisions. Since the one is used only in Chapter 5, there should be no

confusion. Letn∈ N0. In this thesis except Chapter 5, we use definitions,

tn ≡ n∆t, NT ≡ [T/∆t]. (2.2)

In only Chapter 5, we employ other definitions,

tn ≡

∆t0 +(n−1)∆t (n≥ 1)

0 (n = 0)
, NT ≡ [(T −∆t0)/∆t]+1, (2.3)

where∆t0 is another time increment used only in the first step of the computation.

For a functionφ on Ω × (0,T) or Γ × (0,T) and an integern (0≤ n≤ NT), φn

meansφn ≡ φ(·, tn). For a given sequence{φn}NT
n=1 in a normed spaceX, we

define

∥φ∥l∞(X) ≡ max
{
∥φn∥X; n = 1, · · · ,NT

}
,

∥φ∥l2(X) ≡
{ NT

∑
n=1

(tn− tn−1)∥φn∥2
X

}1/2

.

Let Th ≡ {K} be a triangulation ofΩ andNe ≡ ♯Th be the total number of

elements, where the subscripth means representative length of the triangulation

andK is closed. We defineΩh by

Ωh ≡ int
∪

{K; K ∈ Th}

andΓh ≡ ∂Ωh. GenerallyΩh is different fromΩ , and in the finite element method

every integral overΩ is replaced by one overΩh. Therefore, we prepare the

notation(·, ·)h asL2(Ωh)-inner product.

Let l ∈ N. We set conforming finite element spaces,

Xhl ≡
{

vh ∈C0(Ωh)d; vh|K ∈ Pl (K)d, ∀K ∈ Th
}
,

Mhl ≡
{

qh ∈C0(Ωh); qh|K ∈ Pl (K), ∀K ∈ Th
}
,

(2.4)
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wherePl (K) is the space of polynomials of degreel defined inK ∈Th. We denote

by the same notationΠhl the interpolation operators fromC0(Ω)d to Xhl and from

C0(Ω) to Mhl. For given finite element spacesXh and Mh and a given vector

valued functiong onΓ we define,

Vh(g) ≡
{

vh ∈ Xh; vh(P) = g(P), ∀P∈ Γh
}
,

Vh ≡ Vh(0), Qh ≡ Mh∩L2
0(Ωh),

(2.5)

whereP is any nodal point onΓh. The norms inVh andQh are defined by∥ ·∥Vh ≡
∥ ·∥H1 and∥ · ∥Qh ≡ ∥ ·∥L2, respectively.

2.2 Statement of the problem

Let d = 2 or 3. We consider the nonstationary Navier-Stokes problem subject to

the Dirichlet boundary condition; find(u, p) : Ω × (0,T) → Rd ×R such that

∂u
∂ t

+(u·∇)u−∇
(
2νD(u)

)
+∇p = f in Ω × (0,T),

∇ ·u = 0 in Ω × (0,T),

u = g onΓ × (0,T),

u = u0 in Ω , at t = 0,

(2.6)

whereu = (u1, · · · , ud)T is the velocity,p is the pressure,f = ( f1, · · · , fd)T is

an external force,g = (g1, · · · , gd)T is a boundary velocity,u0 = (u0
1, · · · , u0

d)
T

is an initial velocity,ν(> 0) is a viscosity,D(u) is the strain-rate tensor defined by

Di j (u) ≡ 1
2
(ui, j +u j,i) (i, j = 1, · · · ,d),

and [
∇

(
2νD(u)

)]
i ≡ 2νDi j , j(u) (i = 1, · · · ,d).

Throughout this thesis we deal with this problem.

In order to give a variational formulation for (2.6), we prepare the following.

We define continuous bilinear formsa on X×X, b on X×M and a trilinear form
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a1 onX×X×X by

a(u,v) ≡ 2ν
(
D(u), D(v)

)
, (2.7a)

b(v,q) ≡ − (∇ ·v, q), (2.7b)

and

a1(w,u,v) ≡ 1
2

{(
(w·∇)u, v

)
−

(
(w ·∇)v, u

)}
, (2.7c)

respectively. For functionsu∈ X which satisfies∇ ·u = 0 andv∈V, it holds the

identity,

a1(u,u,v) =
(
(u·∇)u, v

)
.

A variational formulation for (2.6) is to find{(u, p)(t) ∈V(g(t))×Q; t ∈ (0,T)}
such that, for anyt ∈ (0,T),

(∂u
∂ t

(t),v
)

+a1(u(t),u(t),v)

+a(u(t),v)+b(v, p(t)) = ( f (t),v), ∀v∈V,

b(u(t),q) = 0 ∀q∈ Q,

(2.8)

and the initial condition

u(0) = u0. (2.9)

By the material derivation defined by

D
Dt

≡ ∂
∂ t

+(u·∇),

the variational formulation (2.8) is equivalent to the equations,
(Du

Dt
(t),v

)
+a(u(t),v)+b(v, p(t)) = ( f (t),v), ∀v∈V,

b(u(t),q) = 0, ∀q∈ Q.

(2.10)
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2.3 A finite element scheme based on the conven-

tional Galerkin method

In this section we review a scheme for (2.6), which is analyzed in Tabata and

Tagami [46]. For the sake of simplicity, we assumeΩ = Ωh throughout the sec-

tion. We choose a typical element P2/P1, which implies thatXh ≡ Xh2 andMh ≡
Mh1. Then, the bilinear formb satisfies the uniform inf-sup condition [4, 7, 17] on

Vh×Qh, i.e., there exists a positive constantβ ∗ such that, for anyh,

inf
qh∈Qh

sup
vh∈Vh

b(vh,qh)
∥vh∥Vh∥qh∥Qh

≥ β ∗. (2.11)

For a given sequence{un}NT
n=0, we define the backward difference quotient ofu at

time stepn by

D̄∆tu
n ≡ un−un−1

∆t
.

We now write the scheme discretized by the semi-implicit backward Euler

method in time and by the finite element method in space; find{(un
h, pn

h)∈Vh(gn)×
Qh; n = 1, · · · ,NT} such that, forn = 1, · · · ,NT ,

(
D̄∆tu

n
h,vh

)
+a1(un−1

h ,un
h,vh)

+a(un
h,vh)+b(vh, pn

h) = ( f n,vh), ∀vh ∈Vh,

b(un
h,qh) = 0, ∀qh ∈ Qh,

(2.12)

whereu0
h ∈Vh(g0) is a function approximatingu0.

Let (uh, ph) be a solution of (2.12). For the sufficiently smooth solution(u, p)

of (2.6), the scheme (2.12) has the following convergence property. There exists

a positive constantC, independent ofh and∆t, such that

∥u−uh∥l2(H1) +∥p− ph∥l2(L2) ≤C(∆t +h2). (2.13)

The proof has been done in Tabata and Tagami [46].

We consider the scheme (2.12) on computational and mathematical sides. The

matrix appearing in the scheme is nonsymmetric and is not invariant at each time
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step, because ofa1 corresponding to the nonlinear convection term(u·∇)u. Con-

sequently, we need a nonsymmetric linear solver. From the mathematical aspect,

this scheme is reliable by the convergence property (2.13). In constructing the

numerical scheme, such error analysis is one of goals. However, since the con-

ventional Galerkin method is employed in the scheme, we need to use smallh and

∆t for high Reynolds number problems (0< ν ≪ 1). This point is the problem of

the scheme.
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Chapter 3

The characteristic-curve method

This chapter is devoted to the study of the characteristic-curve method. The idea

of the characteristic-curve method is to consider the trajectory of the fluid particle

and discretize the material derivative term along the trajectory.

In Section 3.1, first and second order approximations of the material deriva-

tive are introduced. The first order approximation is employed for the scheme

to be presented in Chapter 7, and the second order approximation using a single

step method is used for the scheme to be proposed in Chapter 5. In Section 3.2,

characteristic-curve finite element schemes using the first and second order ap-

proximations are reviewed. The first order scheme has been proposed and ana-

lyzed in Pironneau [33, 34] and Süli [38]. The second order scheme using a multi

step method has been presented and analyzed in Boukir et al. [3].

3.1 Discretization of the material derivative

In this section we give first and second order approximations of the material

derivative.
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3.1.1 First order approximation

We introduce the characteristic-curve method of first order in time. For a velocity

w : Ω → Rd, we defineX1(w,∆t) : Ω → Rd by

X1(w,∆t)(x) ≡ x−w(x)∆t.

We use the symbol◦ to designate the composition of functions, e.g., for a function

φ defined inΩ (
φ ◦X1(w,∆t)

)
(x) ≡ φ(X1(w,∆t)(x)).

Let u : Ω × (0,T) → Rd be a smooth function andX(·;x) : (0,T) → Rd be a

solution of the ordinary differential equation, X′(t) = u(X, t) in (tn−1, tn),

X(tn) = x,
(3.1)

for a pointx ∈ Ω and an integern (1 ≤ n ≤ NT) (see Figure 3.1). Then, for a

smooth functionφ : Ω × (0,T) → R, it holds that

Dφ
Dt

(X(t), t) =
d
dt

φ(X(t), t) in (tn−1, tn). (3.2)

The material derivative ofφ at t = tn is approximated as follows;

Dφ
Dt

(x, t) =
d
dt

φ(X(t), t)

=
φn(X(tn))−φn−1(X(tn−1))

∆t
+O(∆t)

=
φn−φn−1◦X1(un−1,∆t)

∆t
(x)+O(∆t), (3.3)

where we have used the relation,

X(tn−1;x) = X1(un−1,∆t)(x)+O(∆t2).

For the Navier-Stokes equations, substitutingui (i = 1, · · · ,d) into φ in (3.3), we

get the approximation of the material derivative ofu at t = tn,

Du
Dt

(x, t) =
un−un−1◦X1(un−1,∆t)

∆t
(x)+O(∆t). (3.4)
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Figure 3.1: Trajectory of a fluid particle whose position isx at t = tn.

Let us consider a scheme using the equality (3.4), and assume thatun is an

unknown function andun−1 is a known function. The nonlinearity of the Navier-

Stokes equations is in the composite functionun−1◦X1(un−1,∆t). Sinceun−1 is a

known function, the scheme is linear and symmetric.

3.1.2 Second order approximation

For velocitiesu, w : Ω → Rd, we defineX2(u,w,∆t) andX̄1(u,w,∆t) : Ω → Rd

by

X2(u,w,∆t)(x) ≡ x−
{

u(x)+w(x−w(x)∆t)
}∆t

2
,

X̄1(u,w,∆t)(x) ≡ x−
{

2u(x)−w(x)
}

∆t,

respectively, whereX2 is based on the Heun method.

Single step method

First, we explain a second order approximation ofDφ/Dt by a single step method.

The evaluation point is(X(tn−1/2), tn−1/2), which is different from the point in the
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case of the first order approximation,(X(tn), tn). From (3.2), we have

Dφ
Dt

(X(tn−1/2), tn−1/2) =
φn(X(tn))−φn−1(X(tn−1))

∆t
+O(∆t2)

=
φn(x)−φn−1◦X2(un,un−1,∆t)(x)

∆t
+O(∆t2), (3.5)

where the last equality is derived by the identity, see (5.11) later,

X(tn−1;x) = X2(un,un−1,∆t)(x)+O(∆t3).

In the case of the Navier-Stokes equations, we obtain the approximation of the

material derivative ofu,

Du
Dt

(X(tn−1/2), tn−1/2) =
un−un−1◦X2(un,un−1,∆t)

∆t
(x)+O(∆t2). (3.6)

Details are discussed in Section 5.2.

Let us consider a scheme using the equality (3.6), and assume thatun is an un-

known function andun−1 is a known function. This second order approximation

usesun andun−1, and the scheme is nonlinear because ofun in X2. For this prob-

lem, we give an internal iteration procedure in Chapter 5, which keeps symmetry

of the matrix appearing the procedure.

Multi (two) step method

Next, we introduce a second order approximation by a multi (two) step method

which is employed in Boukir et al. [3]. The second order approximation of the

material derivative ofφ using the multi (two) step method is given by

Dφ
Dt

(X(tn), tn)

=
3φn−4φn−1◦ X̄1(un−1,un−2,∆t)+φn−2◦ X̄1(un−1,un−2,2∆t)

2∆t
(x)+O(∆t2).

(3.7)

We give the proof of (3.7). Since it holds that

f ′(t) =
3 f (t)−4 f (t −∆t)+ f (t −2∆t)

2∆t
+O(∆t2)
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for a smooth functionf , we have

Dφ
Dt

(X(tn), tn) =
d
dt

φ(X(t), t)
∣∣∣
t=tn

=
3φn(X(tn))−4φn−1(X(tn−1))+φn−2(X(tn−2))

2∆t
+O(∆t2).

(3.8)

From the Taylor expansion ofX,

X(t −∆t) = X(t)−∆tX′(t)+
∆t2

2
X′′(t)+O(∆t3),

we get

φn−1(X(tn−1)) = φn−1(X(tn−∆t))

= φn−1(X(tn)−∆tX′(tn)+
∆t2

2
X′′(tn)+O(∆t3)

)
= φn−1(X(tn)−∆tX′(tn)

)
+

∆t2

2
X′′(tn) ·∇φn−1(X(tn)

)
+O(∆t3)

= φn−1◦ X̄1(un−1,un−2,∆t)(x)+
∆t2

2
X′′(tn) ·∇φn−1(X(tn)

)
+O(∆t3), (3.9)

where for the last equality we have used the relation,

X′(tn;x) = un(x) = 2un−1(x)−un−2(x)+O(∆t2)

Similarly it holds that

φn−2(X(tn−2))

= φn−2◦ X̄1(un−1,un−2,2∆t)(x)+2∆t2X′′(tn) ·∇φn−2(X(tn)
)
+O(∆t3)

= φn−2◦ X̄1(un−1,un−2,2∆t)(x)+2∆t2X′′(tn) ·∇φn−1(X(tn)
)
+O(∆t3).

(3.10)

Combining (3.9) and (3.10) with (3.8) leads to (3.7), because the coefficient of

X′′(tn) ·∇φn−1
(
X(tn)

)
vanishes.

In the case of the Navier-Stokes equations, we get the approximation of the

material derivative ofu,

Du
Dt

(X(tn), tn) =
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3un−4un−1◦ X̄1(un−1,un−2,∆t)+un−2◦ X̄1(un−1,un−2,2∆t)
2∆t

(x)+O(∆t2).

(3.11)

Now, we consider a scheme using the equality (3.11). The second order ap-

proximation needsun−2 in addition toun andun−1 which imposesn≥ 2, and the

scheme is linear and symmetric.

3.2 Finite element schemes based on the characteristic-

curve method

In this section we review two schemes for (2.6), which are proposed and analyzed

in Pironneau [33, 34], S̈uli [38] and Boukir et al. [3]. For the sake of simplicity,

we assumeΩ = Ωh and a boundary velocityg = 0 throughout the section. We

choose a typical element P2/P1, i.e.,Xh ≡ Xh2 andMh ≡ Mh1. The bilinear formb

satisfies the uniform inf-sup condition (2.11) onVh×Qh.

3.2.1 First order scheme

Foru, w∈ H1(Ω)d we define a linear formMh1(u,w;∆t),

⟨Mh1(u,w;∆t), vh⟩ ≡
(u−w◦X1(w,∆t)

∆t
, vh

)
.

We show the scheme discretized by the backward Euler method using the first

order characteristic-curve method in time and by the finite element method in

space; find{(un
h, pn

h)}
NT
n=1 ⊂Vh×Qh such that, forn = 1, · · · ,NT ,⟨Mh1(un

h,u
n−1
h ;∆t), vh⟩+a(un

h,vh)+b(vh, pn
h) = ( f n,vh), ∀vh ∈Vh,

b(un
h,qh) = 0, ∀qh ∈ Qh,

(3.12)

whereu0
h is a function approximatingu0.

Let (uh, ph) be a solution of (3.12) and(u, p) be the sufficiently smooth solu-

tion of (2.6). The scheme (3.12) has a convergence property, as follows. Suppose
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σ > (d−1)/2 and∆t = O(hσ ). Then, there exists a positive constantC, indepen-

dent ofh and∆t, such that, for sufficiently smallh and∆t,

∥u−uh∥l∞(H1) +∥p− ph∥l2(L2) ≤C(∆t +h2). (3.13)

For the proof, see S̈uli [38].

The scheme is of first order in time, and we can see the accuracy in (3.13).

The matrix appearing in the scheme (3.12) is symmetric and identical by the

first order characteristic-curve method. Therefore, we can use symmetric linear

solvers, which makes the computational time short. By using the characteristic-

curve method, the scheme is an upwind type one, and works for high Reynolds

number problems. On the other hand, it is difficult to integrate the term including

the composite function,un−1
h ◦X1(un−1

h ,∆t), for the computation.

3.2.2 Second order scheme

Foru, w, ζ ∈ H1(Ω)d we define a linear formM̄h2(u,w,ζ ,∆t),

⟨M̄h2(u,w,ζ ;∆t), vh⟩ ≡
(3u−4w◦ X̄1(w,ζ ,∆t)+ζ ◦ X̄1(w,ζ ,2∆t)

2∆t
, vh

)
.

Let (u, p) be the smooth solution of (2.6) and we assume thatu1
h ∈Vh approximat-

ing u1 is given. The scheme discretized by the backward Euler method using the

second order characteristic-curve method in time and by the finite element method

in space is to find{(un
h, pn

h)}
NT
n=2 ⊂Vh×Qh such that, forn = 2, · · · ,NT ,⟨M̄h2(un

h,u
n−1
h ,un−2

h ;∆t), vh⟩+a(un
h,vh)+b(vh, pn

h) = ( f n,vh), ∀vh ∈Vh,

b(un
h,qh) = 0, ∀qh ∈ Qh.

(3.14)

The scheme (3.14) has a convergence property,

∥u−uh∥l∞(H1) +∥p− ph∥l2(L2) ≤C(∆t +h2). (3.15)

under some assumptions including the condition

∆t ≤Chd/6.
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In addition to the property of the scheme (3.12), the scheme (3.14) is of second

order in time. The hypothesis thatu1
h is given is supposed. Therefore, we need to

find u1
h of a second order approximation tou1 by another scheme.
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Chapter 4

Numerical integration for

characteristic-curve finite element

schemes

In computation by characteristic-curve finite element schemes, it is not so easy to

integrate composite functions on triangular elements. In this chapter we show a

numerical integration procedure to compute the integrals. In Section 4.1, numer-

ical integration formulas of degree two and five are introduced. In Section 4.2,

we give our numerical integration procedure which includes an efficient element-

search algorithm.

4.1 Numerical integration formulas

Let K ∈ Th be a fixed triangular element. In this section we refer to Stroud [37]

and introduce numerical integration formulas of degree two and five onK in R2

andR3.

In order to introduce the formulas, we prepare the barycentric coordinates. Let

{Pi}d+1
i=1 be the nodal points of the elementK and(xi

1, · · · ,xi
d)

T be the coordinates
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of Pi . For x∈ Rd, we define the barycentric coordinates(λ1(x), · · · ,λd+1(x))T ∈
Rd+1 by

i
⌣

λi(x) ≡
1
△

det


1 · · · 1 · · · 1

x1
1 · · · x1 · · · xd+1

1
...

...
...

x1
d · · · xd · · · xd+1

d

 ,

where△∈ R is defined by

△≡ det


1 · · · 1

x1
1 · · · xd+1

1
...

...

x1
d · · · xd+1

d

 > 0.

Figure 4.1 shows the two-dimensional barycentric coordinates.λi (i = 1, · · · ,d+

1) is a linear function and barycentric coordinates satisfy the following properties,

λi(Pj) = δi j ,
d+1

∑
i=1

λi(x) = 1.

If x /∈ K, there isi∗ ∈ {1, · · · ,d+1} such thatλi∗(x) < 0 (see Figure 4.1 again).

P1

P2 P3

λ2(x)

λ1(x)

λ3(x)
x

λ1 < 0

λ2 < 0λ3 < 0

Figure 4.1: The barycentric coordinates inR2.
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In the following, forβ1, · · · ,βd+1 ∈ R, we use the notation(β1, · · · ,βd; βd+1),

which is the set defined by

(β1, · · · ,βd; βd+1)

≡
{
(γ1, · · · ,γd+1); (γ1, · · · ,γd+1) is a permutation of(β1, · · · ,βd+1)

}
.

If all the βi , i = 1, · · · ,d+1, are distinct, then,♯(β1, · · · ,βd; βd+1) = (d+1)!. For

example, the set(p, p, p; q) consists of the four elements,(p, p, p,q), (p, p,q, p),

(p,q, p,q) and(q, p, p, p).

Let f ∈C0(K) be a function. We set

I [ f ,K] ≡
∫

K
f dx. (4.1)

The numerical approximation ofI [ f ,K] is often done by the formula of the type

I [ f ,K] ≈ Ih[ f ,K] ≡
N

∑
i=1

f
(
ai

)
wi ,

Hereai , i = 1, · · · ,N, are points inK ∈ Th, andwi ∈ R, i = 1, · · · ,N, are called

weights. For the error term of the formulaEh[ f ,K] ≡ I [ f ,K]− Ih[ f ,K], we define

deg(Eh) by

deg(Eh) ≡ sup{k∈ N0; Eh[p,K] = 0, ∀p∈ Pk(K)}.

When deg(Eh) = l , we say thatIh[ f ,K] is a numerical integration formula of de-

greel .

For l = 2 and 5, we use a numerical integration formula of degreel ,

Ih[ f ,K; l ] ≡ meas(K)
N(l)

d

∑
i=1

f
(
a(l)

i

)
ω(l)

i (4.2)

asIh[ f ,K], where the notations are defined as follows.

(i) l = 2 (see Figure 4.2 (left)) :

N(2)
d ≡ d+1, p≡ d+2−

√
d+2

(d+1)(d+2) , q≡ d+2+d
√

d+2
(d+1)(d+2) ,
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ω(2)
i ≡ 1

d+1 (i = 1, · · · ,d+1),

for eachi, a(2)
i corresponds to the following barycenter coordinates,

a(2)
i : (λ1, · · · ,λd+1) ∈ (p, · · · , p; q) (i = 1, · · · ,d+1).

(ii) l = 5, d = 2 (see Figure 4.2 (right)) :

N(5)
2 ≡ 7, t ≡ 1

3, p≡ 6−
√

15
21 , q≡ 9+2

√
15

21 , r ≡ 6+
√

15
21 , s≡ 9−2

√
15

21 ,

ω(5)
i ≡


9
40 (i = 1)

155−
√

15
1200 (i = 2, 3, 4)

155+
√

15
1200 (i = 5, 6, 7)

,

for eachi, a(5)
i corresponds to the following barycenter coordinates,

a(5)
i :


(λ1,λ2,λ3) ∈ (t, t; t) (i = 1)

(λ1,λ2,λ3) ∈ (p, p; q) (i = 2, 3, 4)

(λ1,λ2,λ3) ∈ (r, r; s) (i = 5, 6, 7)

.

(iii) l = 5, d = 3 :

N(5)
3 ≡ 15,

t ≡ 1
4, p1 ≡ 7−

√
15

34 , q1 ≡ 13+3
√

15
34 , p2 ≡ 7+

√
15

34 , q2 ≡ 13−3
√

15
34 ,

r ≡ 10−2
√

15
40 , s≡ 10+2

√
15

40 ,

ω(5)
i ≡



16
135 (i = 1)

2665+14
√

15
37800 (i = 2, · · · ,5)

2665−14
√

15
37800 (i = 6, · · · ,9)

20
378 (i = 10, · · · ,15)

,

for eachi, a(5)
i corresponds to the following barycenter coordinates,

a(5)
i :



(λ1, · · · ,λd+1) ∈ (t, t, t; t) (i = 1)

(λ1, · · · ,λd+1) ∈ (p1, p1, p1; q1) (i = 2, · · · ,5)

(λ1, · · · ,λd+1) ∈ (p2, p2, p2; q2) (i = 6, · · · ,9)

(λ1, · · · ,λd+1) ∈ (r, r,s; s) (i = 10, · · · ,15)

.

33



Figure 4.2: The points used for the numerical integration formulas of degree two

(left) and five (right) inR2.

4.2 Element-search algorithms

In characteristic-curve finite element schemes, we have to compute integrals of

composite functions such as,∫
K

un−1
h ◦X1(un−1

h ,∆t) ·vh dx

on triangular elementsK. We setf ≡ un−1
h ◦X1(un−1

h ,∆t) ·vh and the above integral

is equal toI [ f ,K], which is approximated byIh[ f ,K; l ] for l = 2, 5, i.e.,

I [ f ,K] ≈ Ih[ f ,K; l ] = meas(K)
N(l)

d

∑
i=1

f
(
a(l)

i

)
ω(l)

i .

Then, we need the value,

f (a(l)
i ) =

(
un−1

h ◦X1(un−1
h ,∆t) ·vh

)(
a(l)

i

)
= un−1

h ◦X1(un−1
h ,∆t)

(
a(l)

i

)
·vh

(
a(l)

i

)
,

for i = 1, · · · ,N(l)
d . Generally, the pointX1(un−1

h ,∆t)(a(l)
i ) is not in K, although

a(l)
i is always inK. Therefore, we set the following problem (see Figure 4.3).
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· · ·

Kl

· · ·

x∗

Kl∗

Figure 4.3: The pointx∗ and the elementKl∗ in Problem 4.1.

Problem 4.1. LetTh = {Kl}Ne
l=1 and x∗ ∈ Ωh be given. Find l∗ ∈ {1, · · · ,Ne} such

that x∗ ∈ Kl∗ .

For any integerl ∈ {1, · · · ,Ne}, let (λ (l)
1 , · · · ,λ (l)

d+1)
T be the barycentric coor-

dinates for the elementKl . It holds thatx∗ ∈ Kl , if and only if,

λ (l)
i ≥ 0, ∀i ∈ {1, · · · ,d+1}. (Cl )

For anyl ∈ {1, · · · ,Ne}, let {m(l)
i }d+1

i=1 ⊂ {1, · · · ,Ne}∪{−1} be the neighbor ele-

ment numbers for the elementKl (see Figure 4.4). We note that

(i) ∀i ∈ {1, · · · ,d+1}, ∀x∈ K
m(l)

i
, λ (l)

i (x) ≤ 0,

(ii) if m(l)
i = −1, then,Kl ∩Γh = {x∈ Kl ; λ (l)

i (x) = 0} ̸= /0.

Let us introduce the following simple element-search algorithm. It may be

easy to code, but it takes a lot of computational time.

Algorithm 4.1 (Simple algorithm).

01: for n =1,...,Ne, begin
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P
(l)
1

P
(l)
2 P

(l)
3

Kl

K
m

(l)
2

K
m

(l)
3

K
m

(l)
1

Figure 4.4: Correspondence between an elementKl and elementsK
m(l)

i
(i =

1, 2, 3) in R2.

02: if (Cn) is satisfied, set l∗ ≡ n and break

03: end

04: return l∗.

Our element-search algorithm for Problem 4.1 is an efficient one, which is

illustrated by Figure 4.5. For our algorithm, we need the data{m(l)
i }d+1

i=1 for all

l ∈ {1, · · · ,Ne}. The algorithm is as follows.

Algorithm 4.2 (Efficient algorithm).

01: l0 ∈ {1,...,Ne}: initial guess, given

02: while(1), begin

03: if (Cl0) is satisfied, set l∗ ≡ l0 and break

04: for i =1,...,d+1, begin

05: if( ( λ (l0)
i <0) and ( m(l0)

i ̸= -1) ), set l1 ≡ m(l0)
i and break

06: end

07: set l0 ≡ l1

08: end

09: return l∗.

Remark 4.1. (i) When we compute Ih[ f ,Km; l ], for the first numerical integration
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point, it may be the best choice to set the initial guess l0 = m in Algorithm 4.2.

(ii) If Ωh is nonconvex, we should pay attention to the initial guess l0 in the algo-

rithm.

· · ·

Kl

· · ·

x∗

Kl∗

Figure 4.5: An element-search order by Algorithm 4.2 inR2.

37



Chapter 5

A single-step characteristic-curve

finite element scheme of second

order in time

This chapter deals with a single-step characteristic-curve finite element scheme of

second order in time, which has been developed by the author and Tabata [32].

Throughout this chapter we setg = 0 in the Navier-Stokes problem (2.6). The

scheme is given in the first section. In Section 5.2 the consistency of the scheme,

second order accuracy, is proved. Numerical results for a test problem are given

in Section 5.3. The importance of the additional correction term is shown in the

results. Contents of this chapter have been reported in the author and Tabata [32].

Only in this chapter, we use the definitions of time subdivisions (2.3).

5.1 The finite element scheme

In this section we present a characteristic-curve finite element scheme for the

Navier-Stokes equations. It is of single step and second order in time.

In order to present our scheme for (2.6) we prepare the following. We choose
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a typical element P2/P1, i.e.,Xh ≡ Xh2 andMh ≡ Mh1. For u, w, ζ ∈ H1
0(Ωh)d,

p, q ∈ H1(Ωh), r ∈ L2(Ωh) and f , g ∈ L2(Ωh)d, we define linear formsAh1

(u,w, r), Ah2(u,ζ ,w, p,q), Fh1 f andFh2( f ,g,w) onVh andBhu onQh by

Ah1(u,w, r) ≡ Mh1(u,w ;∆t0)+Dh1u+Ph1r,

Ah2(u,ζ ,w, p,q) ≡ Mh2(u,ζ ,w ;∆t)+Dh2(u,w)+Ph2(w, p,q),⟨
Bhu,qh

⟩
≡ −

(
∇ ·u,qh

)
h
,

⟨
Fh1 f ,vh

⟩
≡

(
f ,vh

)
h
,⟨

Fh2( f ,g,w),vh

⟩
≡ 1

2

(
f +g◦X1(w,∆t),vh

)
h
,

where(⟨
Mh1(u,w ;∆t0),vh

⟩
=

(u−w◦X1(w,∆t0)
∆t0

, vh

)
h
,

)
⟨
Mh2(u,ζ ,w ;∆t),vh

⟩
≡

(u−w◦X2(ζ ,w,∆t)
∆t

, vh

)
h
,⟨

Dh1u,vh

⟩
≡ 2ν

(
D(u),D(vh)

)
h
,

⟨
Ph1r,vh

⟩
≡ −

(
∇ ·vh, r

)
h
,⟨

Dh2(u,w),vh

⟩
≡ ν

(
D(u)+D(w)◦X1(w,∆t), D(vh)

)
h

+ν∆t
(

Di j (w)wk, j , vhi,k

)
h
,⟨

Ph2(w, p,q),vh

⟩
≡ 1

2

(
∇p+∇q◦X1(w,∆t), vh

)
h
.

For{un}NT
n=0⊂H1

0(Ωh)d, {pn}NT
n=1⊂H1(Ωh) and{ f n}NT

n=1⊂L2(Ωh)d, linear forms

A n
h (u, p) andF n

h ( f ,u) onVh are defined by

A n
h (u, p) ≡

Ah2(un,un,un−1, pn, pn−1) (n≥ 2),

Ah1(u1,u0, p1) (n = 1),

F n
h ( f ,u) ≡

Fh2( f n, f n−1,un−1) (n≥ 2),

Fh1 f 1 (n = 1).

In order to unify the notation we putBn
hu≡Bhun. For a given continuous function

f we setf n
h ≡ Πh2 f (tn) in this chapter.

We now present the scheme for (2.6); find{(un
h, pn

h)}
NT
n=1 ⊂Vh×Qh such that,
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for n = 1, · · · ,NT , A n
h (uh, ph) = F n

h ( fh,uh) in V ′
h,

Bn
huh = 0 in Q′

h,
(S1)

whereu0
h ≡ Πh2u0. Forn≥ 2 this is equivalent to the equations,

(un
h−un−1

h ◦X2(un
h,u

n−1
h ,∆t)

∆t
, vh

)
h

+ν
(

D(un
h)+D(un−1

h )◦X1(un−1
h ,∆t), D(vh)

)
h
+ν∆t

(
Di j (un−1

h )un−1
hk, j , vhi,k

)
h

+
1
2

(
∇pn

h +∇pn−1
h ◦X1(un−1

h ,∆t), vh

)
h

=
1
2

(
f n
h + f n−1

h ◦X1(un−1
h ,∆t), vh

)
h
, ∀vh ∈Vh,(

∇ ·un
h, qh

)
h
= 0, ∀qh ∈ Qh.

In the next section the scheme is shown to be of second order in∆t for n≥ 2, and

of first order in∆t0 for n= 1. By taking∆t0 = O(∆t2), the whole scheme becomes

of second order in time increment∆t.

Remark 5.1. (i) For vh ∈Vh and qh ∈ Qh it holds that⟨
Ph1qh,vh

⟩
=

⟨
Bhvh,qh

⟩
,

i.e.,Ph1 = B′
h on Qh, thoughPh1 is defined on L2(Ωh).

(ii) In A n
h (n ≥ 2), we need un−1 and pn−1 to get un and pn. If Ah2 were used

when n= 1, we would need p0, which is not given as the initial condition in the

Navier-Stokes equations. This is the reason why we useAh1 at n= 1. In the case

of the convection-diffusion equation, such fact does not occur.

Since the scheme is nonlinear inun
h for n≥ 2, we prepare aninternal iteration

procedure. Let {(wk
h, r

k
h)}

∞
k=1 ⊂Vh×Qh be the solution ofAh2(wk

h,w
k−1
h ,un−1

h , rk
h, pn−1

h ) = Fh2( f n
h , f n−1

h ,un−1
h ) in V ′

h,

Bhwk
h = 0 in Q′

h,
(5.1)
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wherew0
h ≡ un−1

h . (un
h, pn

h) is obtained as the limit of the sequence{(wk
h, r

k
h)}

∞
k=1.

In the real computation if the convergence criterion,

∥wk
h−wk−1

h ∥H1(Ωh)d +∥rk
h− rk−1

h ∥L2(Ωh)

∥wk
h∥H1(Ωh)d +∥rk

h∥L2(Ωh)
< εI (5.2)

is satisfied for somek, we set(un
h, pn

h) ≡ (wk
h, r

k
h). HereεI is a sufficiently small

positive constant. We note that (5.1) is a linear problem inwk
h andrk

h whose matrix

is symmetric.

Remark 5.2. One can choose other finite element spaces Vh×Qh satisfying the

inf-sup condition(2.11)and Qh ⊂ H1(Ωh).

Remark 5.3. Scheme(S1) requires that Qh is a subset of H1(Ωh), because the

pressure term is written in a strong form. Using a weak form for the pressure,

which requires only Qh ⊂ L2(Ωh), we can derive a scheme, ˜A n
h (uh, ph) = F n

h ( fh,uh) in V ′
h,

Bn
huh = 0 in Q′

h,
(5.3)

where u0h ≡ Πh2u0,

˜A n
h (u, p)

≡

Mh2(un,un,un−1;∆t)+Dh2(un,un−1)+P̃h2(un−1, pn, pn−1) (n≥ 2),

Mh1(u1,u0;∆t0)+Dh1u1 +Ph1p1 (n = 1),⟨
P̃h2(w, p,q),vh

⟩
≡−1

2

(
∇ ·vh, p+q◦X1(w,∆t)

)
h
− ∆t

2

(
qwi, j , vh j,i

)
h
. (5.4)

The last term of(5.4) is a correction term for second order accuracy in∆t. This

scheme is proved to be of second order in∆t in a similar way to scheme(S1)by

using the analysis in the next section. Numerical experiments, however, show that

scheme(5.3) is not so stable. In fact, we could not get solutions forν ≤ 10−2

in Example 5.1 of Section 5.3 because of oscillation. Hence we do not use this

scheme. To make a stable scheme in a weak form of the pressure is an open

problem.
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5.2 Consistency of the scheme

In this section we assumeΩh = Ω for the sake of simplicity. For an integer

n (2≤ n≤ NT), we set

tn−1/2 ≡ 1
2
(tn + tn−1).

For a functionψ onΩ ×(0,T) andm∈N∪{N−1/2}∪{0} (m≤NT), ψm means

ψm ≡ ψ(·, tm).

Proposition 5.1(consistency). Let n≥ 2. Suppose that f is a sufficiently smooth

function,(u, p) is the sufficiently smooth solution of (2.6) and that X1(un−1,∆t)(Ω),

X2(un,un−1,∆t)(Ω), X1(u0,∆t0)(Ω) ⊂ Ω . Then for any vh ∈Vh it holds that⟨
Ah2(un,un,un−1, pn, pn−1)−Fh2( f n, f n−1,un−1), vh

⟩
= O(∆t2)∥vh∥, (5.5a)⟨

Ah1(u1,u0, p1)−Fh1 f 1, vh

⟩
= O(∆t0)∥vh∥. (5.5b)

We prepare some lemmas for the proof. The first one is trivial, but it is often

used.

Lemma 5.1. For a smooth function f it holds that

1
2

(
f (t)+ f (t −∆t)

)
= f (t − ∆t

2
)+O(∆t2), (5.6a)

f (t)− f (t −∆t)
∆t

= f ′(t − ∆t
2

)+O(∆t2). (5.6b)

Let u : Ω × (0,T)→ Rd be a smooth function. For a pointx∈ Ω , let X( · ;x) :

(0,T) → Rd be the solution of the ordinary differential equation (3.1). We note

that the material derivative of a functionf : Ω × (0,T) → R is written as

D f
Dt

(
X(t), t

)
=

d
dt

f
(
X(t), t

)
. (5.7)
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Setting

Y1(u,∆t)(x) ≡ x+X1(u,∆t)(x)
2

,

we evaluate the equations at a point

Pn−1/2(x) ≡
(
Y1(un−1,∆t)(x), tn−1/2

)
, (5.8)

shown in Figure 5.1.

1−nt

t
nt x

dR⊂Ω))(,( 11 xtuX n ∆−
1−nu
P2/1−nt 2/1−n )(x1−nt

t
nt x

dR⊂Ω))(,( 11 xtuX n ∆−
1−nu
P2/1−nt 2/1−n )(x

Figure 5.1: The evaluation point for the consistency

Using the approximationX2 for X(tn−1), we can construct a second order dis-

cretization of the material derivative as follows.

Lemma 5.2.Let u be a sufficiently smooth function and X2 (un,un−1,∆t)(Ω)⊂Ω .

Then it holds that

un(x)−un−1◦X2(un,un−1,∆t)(x)
∆t

=
Du
Dt

(
Pn−1/2(x)

)
+O(∆t2). (5.9)

Proof. Let X be the solution of (3.1). Substitutingu into f in (5.7) and us-

ing (5.6b), we have

Du
Dt

(X(tn−1/2), tn−1/2) =
un(X(tn))−un−1(X(tn−1))

∆t
+O(∆t2). (5.10)
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Since the Heun method is of second order in time, we have

X(tn−1;x) = x−
{

un(x)+un−1(x−un(x)∆t
)}∆t

2
+O(∆t3)

= x−
{

un(x)+un−1(x−un−1(x)∆t
)}∆t

2
+O(∆t3)

= X2(un,un−1,∆t)(x)+O(∆t3). (5.11)

On the other hand, by (5.6a), it holds that

X(tn−1/2;x) = Y1(un−1,∆t)(x)+O(∆t2). (5.12)

Combining (5.11) and (5.12) with (5.10), we get (5.9).

Lemma 5.3. Suppose that u, f : Ω × (0,T) → Rd and p: Ω × (0,T) → R are

sufficiently smooth functions and that X1(un−1,∆t)(Ω) and X2(un,un−1,∆t)(Ω)⊂
Ω . Then for any x∈ Ω it holds that

un−un−1◦X2(un,un−1,∆t)
∆t

(x)−ν
{

∇D(un)+∇D(un−1)◦X1(un−1,∆t)
}
(x)

+
1
2

{
∇pn +∇pn−1◦X1(un−1,∆t)

}
(x)− 1

2

{
f n + f n−1◦X1(un−1,∆t)

}
(x)

=
(Du

Dt
−2ν∇D(u)+∇p− f

)(
Pn−1/2(x)

)
+O(∆t2), (5.13)

where Pn−1/2(x) is a point defined by(5.8).

Proof. Let X(·;x) be the solution of (3.1). Substituting(−2ν∇D(u) + ∇p−
f )(X(·), ·) into f andtn into t in (5.6a), using the relation

X(tn−1;x) = X1(un−1,∆t)(x)+O(∆t2),

we have

−ν
{

∇D(un)+∇D(un−1)◦X1(un−1,∆t)
}
(x)+

1
2

{
∇pn +∇pn−1◦X1(un−1,∆t)

}
(x)

− 1
2

{
f n + f n−1◦X1(un−1,∆t)

}
(x)

=
{
−2ν∇D(u)+∇p− f

}(
Pn−1/2(x)

)
+O(∆t2). (5.14)

Combining (5.14) with Lemma 5.2, we get the result.
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Lemma 5.4. Let u: Ω → Rd be a sufficiently smooth function satisfying∇ ·u = 0

in Ω and X1(u,∆t)(Ω) ⊂ Ω . Then for any vh ∈Vh it holds that

−
(

∇D(u)◦X1(u,∆t),vh

)
=

(
D(u)◦X1(u,∆t),D(vh)

)
+∆t

(
Di j (u)uk, j ,vhi,k

)
+O(∆t2)∥vh∥. (5.15)

Proof. Since∇ ·u = 0 in Ω , it holds that(
ui, j ◦X1(u,∆t),vhi, j

)
= −

((
ui, j ◦X1(u,∆t)

)
, j ,vhi

)
= −

(
ui, jk ◦X1(u,∆t)(δk j −uk, j∆t),vhi

)
= −

(
ui, j j ◦X1(u,∆t),vhi

)
+∆t

(
ui, jk ◦X1(u,∆t)uk, j ,vhi

)
= −

(
ui, j j ◦X1(u,∆t),vhi

)
+∆t

(
ui, jkuk, j ,vhi

)
+O(∆t2)∥vh∥

= −
(

ui, j j ◦X1(u,∆t),vhi

)
−∆t

(
ui, juk, j ,vhi,k

)
+O(∆t2)∥vh∥.

Similarly we have(
ui, j ◦X1(u,∆t),vh j,i

)
= −

((
ui, j ◦X1(u,∆t)

)
,i ,vh j

)
= −

(
ui, ji ◦X1(u,∆t),vh j

)
−∆t

(
ui, juk,i ,vh j,k

)
+O(∆t2)∥vh∥

= −
(

u j,i j ◦X1(u,∆t),vhi

)
−∆t

(
u j,iuk, j ,vhi,k

)
+O(∆t2)∥vh∥.

Therefore, it holds that(
D(u)◦X1(u,∆t),D(vh)

)
=

1
2

{(
ui, j ◦X1(u,∆t),vhi, j

)
+

(
ui, j ◦X1(u,∆t),vh j,i

)}
= −

(
∇D(u)◦X1(u,∆t),vh

)
−∆t

(
Di j (u)uk, j ,vhi,k

)
+O(∆t2)∥vh∥,

which completes the proof.

Proof of Proposition 5.1.Substitutingun−1 into u in Lemma 5.4, we have

−ν
(

∇D(un−1)◦X1(un−1,∆t),vh

)
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= ν
{(

D(un−1)◦X1(un−1,∆t),D(vh)
)

+∆t
(

Di j (un−1)un−1
k, j ,vhi,k

)}
+O(∆t2)∥vh∥.

(5.16)

Obviously it holds that

−ν
(

∇D(un),vh

)
= ν

(
D(un),D(vh)

)
. (5.17)

Combining (5.16) and (5.17) with Lemma 5.3, we have⟨
Ah2(un,un,un−1, pn, pn−1)−F n

h ( f ,u),vh

⟩
=

((Du
Dt

−∇(2νD(u))+∇p− f
)n−1/2◦Y1(un−1,∆t),vh

)
+O(∆t2)∥vh∥.

Here we have used (5.6b) again. Since(u, p) is the solution of (2.6), we get (5.5a).

The proof of (5.5b) is similar.

5.3 Numerical results

In this section we show numerical results ind = 2 to observe the numerical conver-

gence rate of the scheme. We use the CG method with ILU(0) preconditioner [2]

for solving the system of linear equations. In the scheme we have to compute

integrals of composite functions such as,∫
K

un−1
h ◦X2(wk−1,un−1

h ,∆t)vh dx

on triangular elementsK. The integrand

un−1
h ◦X2(wk−1,un−1

h ,∆t)vh

is not smooth onK. It is known that rough numerical integration causes oscilla-

tion even in the case that the stability is theoretically proved for a scheme with

exact integration, see Tabata [41] and Tabata and Fujima [44]. Hence, much at-

tention should be paid to numerical integration of composite functions. Here, we

use a numerical integration formula of degree five on each triangle described in

Section 4.1.
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Example 5.1. In (2.6) we takeΩ = (0,1)2, T = 1, and five values ofν ,

ν = 1, 10−1, 10−2, 10−3, 10−4.

The functions f and u0 are given so that the exact solution is

u

p

(x, t) =
{

1+sin(πt)
}


sin2(πx1)sin(2πx2)

−sin2(πx2)sin(2πx1)

cos(πx1)cos(πx2)

 . (5.18)

We used FreeFem++ [13] for mesh generation. LetNΩ be the division num-

ber of each side ofΩ andh ≡ 1/NΩ be the representative length of each mesh.

Figure 5.2 (left) shows a sample mesh(NΩ = 8). We solve the problem by the

scheme (S1). Since the convergence rate of the backward Euler scheme of the

P2/P1 Galerkin approximation isO(∆t +h2) for the Navier-Stokes equations, e.g.,

(2.13), we choose∆t = h. Furthermore we set∆t0 = h2 andεI = 10−5. We calcu-

latedErrP2/P1 defined by

ErrP2/P1≡
∥Πh2u−uh∥l2(H1(Ω)2) +∥Πh1p− ph∥l2(L2(Ω))

∥uh∥l2(H1(Ω)2) +∥ph∥l2(L2(Ω))
.

Figure 5.2 (right) shows the graph ofErrP2/P1 versus∆t in logarithmic scale for

NΩ = 8, 16, 32 and 64, and the values ofErrP2/P1 and the slopes are given in

Table 5.1. We can observe a second order convergence in∆t. Figure 5.3 exhibits

the graph of maximum internal iteration number versus∆t. It decreases as∆t

becomes small and was equal to 3 or 4 for∆t = 1/64.

Now we examine the importance of the additional correction term

ν∆t
(

Di j (un−1)un−1
k, j , vhi,k

)
(5.19)

in the definition ofDh2. We compare results obtained by schemes with and with-

out this term as well as the first order scheme. Dropping the term from the

scheme (S1), we get ˆA n
h (uh, ph) = F n

h ( fh,uh) in V ′
h,

Bn
huh = 0 in Q′

h,
(5.20)
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whereu0
h ≡ Πh2u0,

ˆA n
h (u, p) ≡

 ˆAh2(un,un,un−1, pn, pn−1) (n≥ 2),

Ah1(u1,u0, p1) (n = 1),
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ˆAh2(u,ζ ,w, p,q) ≡ Mh2(u,ζ ,w ;∆t)+ D̂h2(u,w)+Ph2(w, p,q),⟨
D̂h2(u,w),vh

⟩
≡ ν

(
D(u)+D(w)◦X1(w,∆t), D(vh)

)
.

The first order scheme isA n
h1(uh, ph) = F n

h1 fh in V ′
h,

Bn
huh = 0 in Q′

h,
(5.21)

whereu0
h ≡ Πh2u0,

A n
h1(u, p) ≡

Mh1(un,un−1;∆t)+Dh1un +Ph1pn (n≥ 2),

Mh1(u1,u0;∆t0)+Dh1u1 +Ph1p1 (n = 1).

F n
h1 f ≡ Fh1 f n.

In the first order scheme we do not need to use a first step with a small time in-

crement∆t0. For the comparison with other schemes, however, we use the first

step with∆t0. We solve Example 5.1 under the same condition. The results ob-

tained from the three schemes are shown in Figure 5.4 and Table 5.1. In the case

of ν = 1 the values ofErrP2/P1 of the scheme (5.20) are worse than those of the

scheme (5.21). In the case ofν = 10−1 the results of (5.20) is better than those

of (5.21), but the slope of (5.20) is worse than that of the present scheme (S1). In

the casesν = 10−2,10−3 and 10−4 there is no clear difference between the results

by (5.20) and (S1). These results are explained from the fact that the additional

correction term (5.19) containsν and is proportional to it. These results exhibit

the necessity of the additional correction term for second order in∆t.
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Table 5.1: Values ofErrP2/P1 and slopes of the graphs in Figures 5.2 and 5.4

Present scheme (S1) Scheme (5.20) Scheme (5.21)

NΩ ErrP2/P1 slope ErrP2/P1 slope ErrP2/P1 slope

ν = 1 : 8 3.82×10−1 — 3.64×10−1 — 8.20×10−2 —

16 6.23×10−2 2.62 1.36×10−1 1.42 4.00×10−2 1.04

32 1.31×10−2 2.25 6.22×10−2 1.13 1.97×10−2 1.02

64 3.21×10−3 2.03 2.99×10−2 1.06 9.80×10−3 1.01

ν = 10−1 : 8 1.91×10−1 — 1.51×10−1 — 3.09×10−1 —

16 4.68×10−2 2.03 4.41×10−2 1.78 1.87×10−1 0.73

32 1.13×10−2 2.05 1.38×10−2 1.68 1.06×10−1 0.81

64 2.86×10−3 1.99 5.08×10−3 1.44 5.76×10−2 0.89

ν = 10−2 : 8 2.30×10−1 — 2.26×10−1 — 6.98×10−1 —

16 6.07×10−2 1.92 6.26×10−2 1.85 4.41×10−1 0.66

32 1.28×10−2 2.24 1.35×10−2 2.21 2.68×10−1 0.72

64 2.85×10−3 2.17 3.07×10−3 2.14 1.54×10−1 0.80

ν = 10−3 : 8 4.41×10−1 — 4.14×10−1 — 8.65×10−1 —

16 1.16×10−1 1.93 1.13×10−1 1.87 5.45×10−1 0.67

32 2.85×10−2 2.02 2.84×10−2 2.00 3.34×10−1 0.71

64 7.53×10−3 1.92 7.53×10−3 1.92 1.94×10−1 0.78

ν = 10−4 : 8 5.81×10−1 — 5.75×10−1 — 9.18×10−1 —

16 2.61×10−1 1.15 2.56×10−1 1.17 6.39×10−1 0.52

32 9.48×10−2 1.46 9.35×10−2 1.45 3.72×10−1 0.78

64 3.13×10−2 1.60 3.11×10−2 1.59 2.10×10−1 0.83
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Chapter 6

Stabilized finite element method for

the Stokes equations

In this chapter we deal with the Stokes equations, and the stabilized finite element

methods are reviewed. In Section 6.1, the Stokes equations and its variational

formulation are given. In Section 6.2 we review two stabilized finite element

methods. These are called the Galerkin least square stabilized method and the

penalty stabilized method, respectively.

6.1 Statement of the problem

We consider the stationary Stokes problem subject to the Dirichlet boundary con-

dition; find (u, p) : Ω → Rd×R such that
−2∇D(u)+∇p = f in Ω ,

∇ ·u = 0 in Ω ,

u = g onΓ ,

(6.1)

whereu is the velocity,p is the pressure,f is an external force andg is a boundary

velocity. We assume that the velocityu vanishes on the boundaryΓ , i.e., g = 0,
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for the sake of simplicity. We note that the Stokes equations (6.1) withg = 0 are

linear.

Let a continuous bilinear form ˜a onX×X be the forma defined in (2.7a) with

ν = 1. A variational formulation for (6.1) is to find(u, p) ∈V ×Q such that ã(u,v)+b(v, p) = ( f ,v), ∀v∈V,

b(u,q) = 0, ∀q∈ Q.
(6.2)

Obviously, (6.2) is equivalent to the equation,

ã(u,v)+b(v, p)+b(u,q) = ( f ,v), ∀(v,q) ∈V ×Q. (6.3)

6.2 Stabilized finite element schemes for the Stokes

equations

We refer to Franca and Stenberg [12] for the Galerkin least square stabilized

method and Brezzi and Douglas Jr. [6] for the penalty stabilized method. For

convenience, in this section we assumeΩ = Ωh.

6.2.1 Galerkin least square stabilization

Let δ be a positive constant,hK be the diameter of elementK ∈ Th and(·, ·)K ≡
(·, ·)L2(K)d. We define a bilinear formC GLS

h on (X×M)2 by

C GLS
h

(
(u, p),(v,q)

)
≡ −δ ∑

K∈Th

h2
K

(
−2∇D(u)+∇p, −2∇D(v)+∇q

)
K,

and bilinear formsBGLS
h on (X×M)2 andFGLS

h onX×M by

BGLS
h

(
(u, p),(v,q)

)
≡ ã(u,v)+b(v, p)+b(u,q)+C GLS

h

(
(u, p),(v,q)

)
, (6.4)

FGLS
h (v,q) ≡ ( f ,v)−δ ∑

K∈Th

h2
K

(
f , −2∇D(v)+∇q

)
K, (6.5)

respectively.
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Let Vh ⊂V andQh ⊂ Q be any conforming finite element spaces, i.e., for any

fixed numbersk, l ∈N, Xh ≡Xhk andMh ≡Mhl. The scheme by the Galerkin least

square stabilized method is to find(uh, ph) ∈Vh×Qh such that

BGLS
h

(
(uh, ph),(vh,qh)

)
= FGLS

h (vh,qh), ∀(vh,qh) ∈Vh×Qh. (6.6)

Let CI be a fixed constant satisfying the inverse inequality,

CI ∑
K∈Th

h2
K∥∇D(vh)∥2

L2(K)d ≤ ∥D(vh)∥2, ∀vh ∈Vh.

For any fixedδ (0 < δ ≤CI ), the sufficiently smooth solution(u, p) of (6.1) and

the solution(uh, ph) of (6.6), the scheme has the following convergence property.

There exits a constantC > 0 such that

∥u−uh∥H1 +∥p− ph∥ ≤C(hk +hl+1). (6.7)

For the proof, see Franca and Stenberg [12].

The scheme with P1/P1 element

Let us consider a special element P1/P1, i.e.,Xh ≡ Xh1 and Mh ≡ Mh1. The

scheme (6.6) does not impose inf-sup condition (2.11), and we can choose a cheap

element P1/P1. Then,∇D(vh)
∣∣
K = 0 for anyK ∈ Th andvh ∈Vh. Therefore, we

can take anyδ > 0 and it holds that, for(uh, ph), (vh,qh) ∈Vh×Qh,

BGLS
h

(
(uh, ph),(vh,qh)

)
= ã(uh,vh)+b(vh, ph)+b(uh,qh)+Ch(ph,qh), (6.8)

FGLS
h (vh,qh) = ( f ,vh)−δ ∑

K∈Th

h2
K( f , ∇qh)K, (6.9)

whereCh is a bilinear form onM×M defined by

Ch(p,q) ≡−δ ∑
K∈Th

h2
K(∇p, ∇q)K. (6.10)

The error estimate (6.7) becomes

∥u−uh∥H1 +∥p− ph∥ ≤Ch. (6.11)
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6.2.2 Penalty stabilization with P1/P1 element

We use a cheap element P1/P1, i.e.,Xh ≡ Xh1 andMh ≡ Mh1. We define a bilinear

forms on(X×M)2 by

BPnlty
h

(
(u, p),(v,q)

)
≡ ã(u,v)+b(v, p)+b(u,q)+Ch(p,q). (6.12)

The scheme by the penalty stabilized method is to find(uh, ph) ∈ Vh×Qh such

that

BPnlty
h

(
(uh, ph),(vh,qh)

)
= ( f ,vh), ∀(vh,qh) ∈Vh×Qh. (6.13)

The equation (6.13) is equivalent to the equations, ã(uh,vh)+b(vh, ph) = ( f ,vh), ∀vh ∈Vh,

b(uh,qh)+Ch(ph,qh) = 0, ∀qh ∈ Qh.
(6.14)

For any fixedδ > 0, the sufficiently smooth solution(u, p) of (6.1) and the

solution (uh, ph) of (6.13), the scheme has the following convergence property.

There exits a constantC > 0 such that

∥u−uh∥H1 +∥p− ph∥ ≤Ch. (6.15)

The proof has been given in Brezzi and Douglas Jr. [6].

Let us compare the scheme (6.13) with the scheme (6.6) using P1/P1 element.

The convergence order of (6.13) is the same as one of (6.6), see (6.15) and (6.11).

For P1/P1 element, it holds that, for(uh, ph),(vh,qh) ∈Vh×Qh,

BGLS
h

(
(uh, ph),(vh,qh)

)
= BPnlty

h

(
(uh, ph),(vh,qh)

)
.

Therefore, the difference of the schemes (6.6) and (6.13) is that there is or is not

the term,

−δ ∑
K∈Th

h2
K( f , ∇qh)K

in the right hand sides. For P1/P1 element, the scheme (6.13) is simpler than the

scheme (6.6).
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Chapter 7

A pressure-stabilized

characteristic-curve finite element

scheme

This chapter is devoted to a study of a pressure-stabilized characteristic-curve

finite element scheme. The scheme is a combined one with a penalty stabiliza-

tion method introduced in Subsection 6.2.2 and the first order characteristic-curve

method explained in Subsection 3.1.1. The scheme is presented in Section 7.1 and

a proposition on the stability of the scheme is given in Section 7.2. In Section 7.3

numerical results are shown. There, test problems and cavity flow problems are

solved in 2D and 3D. Contents of this chapter are described in the author and

Tabata [31] and the author [30].

7.1 The finite element scheme

We employ a cheap element P1/P1, i.e.,Xh ≡ Xh1 and Mh ≡ Mh1. We define

bilinear formsah onH1(Ω)d ×H1(Ω)d andbh onH1(Ω)d ×L2(Ω) by

ah(u,v) ≡ 2ν
(
D(u), D(v)

)
h,
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bh(v,q) ≡ − (∇ ·v, q)h,

respectively, For a given continuous functionf , we setf n
h ≡ Πh1 f n in this chapter.

We present the scheme for (2.6); find{(un
h, pn

h)∈Vh(gn)×Qh; n= 1, · · · ,NT}
such that, forn = 1, · · · ,NT ,⟨Mh(un

h,u
n−1
h ;∆t),vh⟩+ah(un

h,vh)+bh(vh, pn
h) = ( f n

h ,vh)h, ∀vh ∈Vh,

bh(un
h,qh)+Ch(pn

h,qh) = 0, ∀qh ∈ Qh,
(S2)

whereu0
h ≡ Πh1u0.

7.2 Stability of the scheme

Setting a seminorm| · |h of Mh, for qh ∈ Mh,

|qh|h ≡

{
∑

K∈Th

h2
K(∇qh, ∇qh)K

}1/2

,

we define, for a given sequence{rn
h}

NT
n=1 ⊂ Mh,

|rh|′l2(Mh)
≡

{
∆t

NT

∑
n=1

|rn
h|

2
h

}1/2

.

For a solution{(un
h, pn

h)}
NT
n=1 of (S2), we assume the following hypothesis.

Hypothesis 7.1.There exists a positive constant c1, independent of h and∆t, such

that, for n= 0, · · · ,NT −1,

1
∆t

∥un
h−un

h◦X1(un
h,∆t)∥ ≤ c1∥un

h∥. (H)

Remark 7.1. In the case of convection-diffusion equation whose unknown func-

tion is φ , an inequality corresponding to(H) is

1
∆t

∥φn
h −φn

h ◦X1(un,∆t)∥ ≤ c1∥φn
h∥.
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The inequality(H) holds, if u∈ C0([0,T]; W1,∞(Ω)d) [36, Lemma 1], where

C0([0,T]; W1,∞(Ω)d) is the space of W1,∞(Ω)d-valued continuous functions in

[0,T]. Since u is the unknown function in the case of the Navier-Stokes equations,

we assume(H) and examine it numerically.

The scheme (S2) is stable under the hypothesis (H).

Proposition 7.1. Suppose that g= 0 and f ∈ C0(Ω × [0,T])d. Let δ (> 0) and

∆t0(< 1/2) be a fixed number. Assume that for any∆t ≤ ∆t0, X1(un
h,∆t)(Ωh) ⊂

Ωh(∀n, 0≤ n≤NT −1) and the Hypothesis 7.1 hold. Then, there exists a positive

constant C, independent of h and∆t, such that

∥uh∥l∞(L2) +
√

ν ∥D(uh)∥l2(L2) +
√

δ |ph|′l2(Mh)
≤C

(
∥u0

h∥+∥ fh∥l2(L2)
)
. (7.1)

Proof. We fix any numbern(1≤ n≤ NT). Substituting(un
h, −pn

h) ∈Vh×Qh into

(vh, qh) in (S2), summing the two equations, we have

1
∆t

(
un

h−un−1
h ◦X1(un−1

h ,∆t), un
h

)
h +2ν∥D(un

h)∥
2 +δ |pn

h|
2
h = ( f n

h , un
h)h.

It holds that

1
∆t

(
un

h−un−1
h , un

h

)
h +2ν∥D(un

h)∥
2 +δ |pn

h|
2
h

= ( f n
h , un

h)h−
1
∆t

(
un−1

h −un−1
h ◦X1(un−1

h ,∆t), un
h

)
h.

Using the inequalities,(a2−b2)/2≤ (a−b)a andab≤ (a2 +b2)/2, we obtain

D̄∆t

(1
2
∥un

h∥
2
)

+2ν∥D(un
h)∥

2 +δ |pn
h|

2
h

≤ ∥un
h∥

2 +
1
2
∥ f n

h∥
2 +

1
2

( 1
∆t

∥un−1
h −un−1

h ◦X1(un−1
h ,∆t)∥

)2
.

From the Hypothesis 7.1, it holds that

D̄∆t

(1
2
∥un

h∥
2
)

+2ν∥D(un
h)∥

2 +δ |pn
h|

2
h ≤ ∥un

h∥
2 +

c2
1

2
∥un−1

h ∥2 +
1
2
∥ f n

h∥
2. (7.2)

Since the above inequality (7.2) holds forn = 1, · · · ,NT , the discrete Gronwall’s

inequality [46] leads to the desired result (7.1).
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Remark 7.2. Proposition 7.1 implies the solvability of the scheme(S2), because

the scheme is linear in(un
h, pn

h).

Now, we consider the stability and advantages of the scheme (S2). Gener-

ally, for time integration, the forward Euler method yields such advantages as

symmetry of the matrix and an explicit scheme, and a disadvantage, strict choice

of time increment, e.g., for a constantC > 0 a stability condition∆t ≤ Ch2 is

required, and the backward Euler method (or Crank-Nicolson method) has the

opposite properties, i.e., the matrix is nonsymmetric because of the convection

term, and stability condition is less severe. The scheme (S2) uses the backward

Euler method, and we can take large∆t. In fact Proposition 7.1 on the stability

holds, and neither a stability condition like∆t ≤Ch2 nor the CFL condition [34]

is assumed in the proposition. Furthermore, the scheme has an advantage of the

characteristic-curve method, i.e., the matrix is symmetric and identical, which en-

ables us to use symmetric linear solvers. For the Navier-Stokes equations there

are two types of stabilization. The one is a pressure-stabilization which is re-

quired when the inf-sup condition onVh andQh is not satisfied. The other is a

stabilization for the nonlinear convection term. It is well known that the conven-

tional Galerkin method causes severe oscillating results for high Reynolds num-

ber problems. To deal with this phenomenon, many kinds of upwind type method

have been proposed, such as SUPG, GLS, BTD, upwinding, characteristic-curve

and so on (see Gresho et al. [15], Hughes et al. [19], Pironneau [34], Tabata and

Fujima [42], Tezduyar [47] and references therein). As explained in Section 3.1,

the characteristic-curve method is considered as an upwind type method, and we

can expect the method to stabilize nonlinear convection term. The scheme (S2)

is a combined finite element scheme with a pressure-stabilization method in Sub-

section 6.2.2 and the characteristic-curve method in Section 3.1. By the pressure-

stabilization method, we can use P1/P1 element, and by the characteristic-curve

method, the scheme works for high Reynolds number problems.
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7.3 Numerical results

In this section we show two- and three-dimensional numerical results by the

scheme (S2). We set two types of numerical example. The one is test prob-

lems to see the convergence rate to the exact solution, and the other is cavity flow

problems to show the usefulness of the scheme. We use the CG and the CR meth-

ods [28] with the point Jacobi preconditioner [2] for solving the system of linear

equations, which work for our symmetric matrix.

The two solutions using numerical integration formula of degree two and five

in Section 4.1 are almost same for Examples 7.1 and 7.2 below. Therefore, in all

the following computations we use the numerical integration formula of degree

two.

For all examples the domainΩ ≡ (0, 1)d (= Ωh) is an unit square. In 2D

we used only FreeFEM++ [13] for mesh generation. In 3D the finite element

subdivision of the domain is constructed by dividing the domain into a union of

triangular prisms and further subdividing each triangular prism into three tedrahe-

dra. In this process, a triangular mesh of the two-dimensional domainω ≡ (0,1)2

by FreeFem++ is used.

We setδ = 0.2 for two-dimensional problems andδ = 0.05 for three-dimensional

problems. In Example 7.1 withν = 1 andNΩ = 32 we have computed five cases

δ = 0.01, 0.1, 0.2, 0.3 and 1. The valueδ = 0.2 gave minimum value of error

(ErrP1/P1 defined in the following subsection) in the cases. Similarly, for Exam-

ple 7.2 withν = 1 andNΩ = 16, the valueδ = 0.05 was the best in five cases

δ = 0.01, 0.04, 0.05, 0.06 and 0.1.

7.3.1 Test problems

In this subsection we set∆t = h and use almost uniform meshes. Let(u, p) and

(uh, ph) be the solutions of the problem (2.6) and the scheme (S2), respectively.
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We defineErrP1/P1 by

ErrP1/P1≡
∥Πh1u−uh∥l2(H1) +∥Πh1p− ph∥l2(L2)

∥uh∥l2(H1) +∥ph∥l2(L2)
,

which represents an error. To examine Hypothesis 7.1 numerically, we set

Ξn(h,∆t) ≡
∥un

h−un
h◦X1(un

h,∆t)∥
∆t∥un

h∥
.

Example 7.1(2D). In (2.6)we take T= 1, and five values ofν ,

ν = 1, 10−1, 10−2, 10−3, 10−4

The functions f, g(= 0) and u0 are given so that the exact solution is the same

as(5.18).

We solve the problem forNΩ = 8, 16, 32, 64 and 128. Figure 7.1 (left)

shows a sample mesh(NΩ = 8). Figure 7.1 (right) shows the graph ofErrP1/P1

versus∆t in logarithmic scale and the values ofErrP1/P1 and the slopes are given

in Table 7.1. We can observe almost first order convergence in∆t (= h). In

Figure 7.2 we plotted the values ofΞn(h,∆t) for all steps(t = n∆t). The inequality

(H) holds forc1 = 7.

Example 7.2(3D). In (2.6)we take T= 1, and five values ofν ,

ν = 1, 10−1, 10−2, 10−3, 10−4

The functions f, g and u0 are given so that the exact solution is

u

p

(x, t) =


sin(x1 +2x2 +x3 + t)−sin(x1 +x2 +2x3 + t)

−sin(2x1 +x2 +x3 + t)+sin(x1 +x2 +2x3 + t)

sin(2x1 +x2 +x3 + t)−sin(x1 +2x2 +x3 + t)

sin(x1 +x2 +x3 + t)−8sin3(1/2)sin(t +3/2)

 .
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Table 7.1: The values ofErrP1/P1 and slopes of the graphs in Figures 7.1 and 7.3

Example 7.1(d = 2) Example 7.2(d = 3)

NΩ ErrP1/P1 slope NΩ ErrP1/P1 slope

ν = 1 : 8 1.99×10−1 — 4 1.07×10−1 —

16 7.60×10−2 1.39 8 4.45×10−2 1.26

32 3.00×10−2 1.34 16 1.74×10−2 1.35

64 1.36×10−2 1.14 32 6.20×10−3 1.47

128 6.32×10−3 1.11 64 3.11×10−3 1.00

ν = 10−1 : 8 3.67×10−1 — 4 8.30×10−2 —

16 2.04×10−1 0.85 8 3.68×10−2 1.17

32 1.11×10−1 0.88 16 1.70×10−2 1.12

64 5.91×10−2 0.91 32 7.09×10−3 1.26

128 3.06×10−2 0.95 64 3.74×10−3 0.92

ν = 10−2 : 8 7.14×10−1 — 4 1.26×10−1 —

16 4.53×10−1 0.66 8 7.77×10−2 0.70

32 2.72×10−1 0.73 16 4.25×10−2 0.87

64 1.55×10−1 0.81 32 2.12×10−2 1.01

128 8.42×10−2 0.88 64 1.10×10−2 0.94

ν = 10−3 : 8 8.15×10−1 — 4 1.73×10−1 —

16 5.45×10−1 0.58 8 1.36×10−1 0.34

32 3.39×10−1 0.69 16 8.57×10−2 0.70

64 1.96×10−1 0.79 32 4.95×10−2 0.79

128 1.08×10−1 0.87 64 2.77×10−2 0.84

ν = 10−4 : 8 8.28×10−1 — 4 1.83×10−1 —

16 5.65×10−1 0.55 8 1.57×10−1 0.22

32 3.59×10−1 0.65 16 1.11×10−1 0.51

64 2.10×10−1 0.77 32 7.65×10−2 0.53

128 1.15×10−1 0.87 64 5.01×10−2 0.61
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Figure 7.1: A sample mesh(NΩ = 8) and the graph ofErrP1/P1 versus∆t in

logarithmic scale, Example 7.1.

We solve the problem forNΩ = 4, 8, 16, 32 and 64. In the case ofNΩ = 64,

the number of nodal points is 324,155, the number of elements is 1,865,472

and DOF (Degree Of Freedom) is 1,296,620. Figure 7.3 (left) shows a sample

mesh(NΩ = 8). Figure 7.3 (right) exhibits the graph ofErrP1/P1 versus∆t in

logarithmic scale and the values ofErrP1/P1 and the slopes are given in Table 7.1.

We can observe, as in results of Example 7.1, almost first order convergence in

∆t (= h). In the cases ofν = 10−3 and 10−4 the values of the slope increase as

∆t tends to small value, and we can expect the values to be 1 as∆t tends to 0. In

Figure 7.4 we plotted the values ofΞn(h,∆t) for all steps(t = n∆t). The inequality

(H) holds forc1 = 1.5.
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Figure 7.2: The values ofΞn(h,∆t) in Example 7.1,ν = 1 (top left), 10−1 (top

right), 10−2 (middle left), 10−3 (middle right), 10−4 (bottom left).
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7.3.2 Application to the stationary Navier-Stokes problem

In this section we consider the following stationary Navier-Stokes problem subject

to the Dirichlet boundary condition; find(u, p) : Ω → Rd×R such that
(u·∇)u− 2

Re
∇D(u)+∇p = f in Ω ,

∇ ·u = 0 in Ω ,

u = g onΓ ,

(7.3)

whereRe is the Reynolds number corresponding to 1/ν . When we apply the

scheme (S2) to the problem (7.3), we need to set the functionsf , g andu0 in (2.6).

We employ the same given functionsf andg in (7.3) for (2.6). For the initial

velocity u0 in (2.6) we use the solution of the stationary Stokes problem (6.1)

with the same functionsf andg in (7.3). Then, solving the scheme (S2), we find

numerical stationary solution of (2.6) as a solution of (7.3).

Remark 7.3. Since u0 is the solution of the stationary Stokes problem which is not

given explicitly, we compute the solution(wh, rh) ∈Vh(g)×Qh of the problem;

ãh(wh,vh)+bh(vh, rh)+bh(wh,qh)+ Ch(rh,qh) = ( fh,vh),

∀(vh,qh) ∈Vh×Qh, (7.4)

whereãh is ah with ν = 1, and set u0h ≡ wh.

We set two-dimensional cavity flow problems with four Dirichlet boundary

conditions.

Problem 7.1 (2D). In (7.3) we take f= 0, Re= 100, 1,000 and 5,000, and

consider four boundary conditions as follows (see Figure 7.5).

g1(x) =

1 (x1 ̸= 0,1, x2 = 1)

0 (otherwise)
, g2 = 0, (DC0)

g1(x) =

1 (x2 = 1)

0 (otherwise)
, g2 = 0, (DC1)
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g1(x) =

4x1(1−x1) (x2 = 1)

0 (otherwise)
, g2 = 0, (C0)

g1(x) =


{

4x1(1−x1)
}2 (x2 = 1)

0 (otherwise)
, g2 = 0. (C1)

The problem with the boundary condition (DC0) or (DC1) is known as a

benchmark one. The difference between the boundary conditions (DC0) and (DC1)

is the values ofg1 at only two corners(x1,x2) = (0,1) and(1,1). In the cases of

the boundary conditions (DC0) and (DC1), there does not exist a weak solution,

i.e., (u, p) /∈ H1(Ω)2× L2(Ω). But we set these problems to compare with the

preceding results by Ghia et al.[16] and see the the difference of values ofg1 at

the two corners. We can regularize these problems by considering the boundary

conditions (C0) or (C1).

Below is three-dimensional cavity flow problems withC0 andC1 continuous

Dirichlet boundary conditions.

Problem 7.2(3D). In (7.3)we take f= 0, Re= 100, 400and1,000, and consider

two boundary conditions as follows (see Figure 7.6).

g1(x) =

16x1(1−x1)x2(1−x2) (x3 = 1)

0 (otherwise)
, g2 = g3 = 0, (C0-3D)

g1(x) =


{

16x1(1−x1)x2(1−x2)
}2 (x3 = 1)

0 (otherwise)
, g2 = g3 = 0. (C1-3D)

Let nt ≡ [t/∆t] be the step number fort ∈ N. Setting a norm

∥(v, q)∥H1×L2 ≡
1√
Re

∥v∥H1 +∥q∥

in the product spaceH1(Ω)d ×L2(Ω), for t ∈ N\{1} we defineDiff t by

Diff t ≡
∥(unt

h , pnt
h )− (unt−1

h , pnt−1
h )∥H1×L2

∥(unt−1
h , pnt−1

h )∥H1×L2
,

which represents a difference of the solutions at timest andt −1.
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Figure 7.5: The statement of cavity flow problems in 2D (top) and graphs of

g1(·,1) for the boundary conditions (DC0) (middle left), (DC1) (middle right),

(C0) (bottom left) and (C1) (bottom right).
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7.3.3 Two-dimensional cavity flow problems

In this subsection we show numerical results for Problem 7.1. Considering the

boundary layers, we used nonuniform meshes refined near the boundary. Fig-

ure 7.7 shows the meshes, and we call the meshes Fine and Coarse meshes, re-

spectively. These two meshes are similar around the center of the domain. The

discretization parameters for the meshes are shown in Table 7.2, wherehmin is

a minimum element size. Table 7.3 shows values of∆t used for Problem 7.1.

For high Reynolds number problems an approximation of the nonlinear convec-

tion term is important. In the scheme, the approximation depends on not onlyh

but also∆t. This is the reason why we change the values of∆t according to the

Reynolds numbers.

Table 7.2: Discretization parameters for meshes in Fig 7.7.

Mesh ♯ of nodes ♯ of elements hmin

Fine 11,470 21,914 2.76×10−3

Coarse 5,403 10,282 5.52×10−3

Table 7.3: Values of∆t used for Problem 7.1.

∆t

Re Fine mesh Coarse mesh

100 1/100 1/50

1,000 1/200 1/100

5,000 1/800 1/400

The numerical solutions converged to stationary solutions in the sense of sat-

isfying the inequality

Diff t < 10−5. (7.5)

The times of convergence are listed in Table 7.4. Since we have definedDiff t for

only t ∈ N\{1}, the times in the table are integers. For eachRe, Figures 7.8, 7.12
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(0, 1) (1, 1) (0, 1) (1, 1)

Figure 7.7: Meshes used for Problem 7.1, Fine mesh(NΩ = 256) (left top),

the mesh magnified around the corners(x1,x2) = (0,1) and(1,1) (left bottom),

Coarse mesh(NΩ = 128) (right top) and the mesh magnified around the corners

(right bottom).
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and 7.16, Figures 7.9, 7.13 and 7.17 show the graphs ofuh1(0.5, ·) anduh2(·,0.5)

of the two stationary solutions on Fine and Coarse meshes, and the streamlines

on Fine mesh, respectively. Figures 7.10, 7.14 and 7.18 and Figures 7.11, 7.15

and 7.19 exhibit the pressure contour lines of stationary solutions on Fine and

Coarse meshes, respectively. For the boundary conditions (DC0) and (DC1), we

plot the results by Ghia et al. [16] in the graphs. In the cases of the boundary

conditions (C0) and (C1), the graphs by the two stationary solutions are almost

same, and the streamlines exhibit the flow patterns well.

In the cases of the boundary conditions (DC0) and (DC1), although there does

not exist a weak solution, the numerical solution exists. ForRe= 100 and 1,000

of (DC0) andRe= 100 of (DC1), the graphs by the two stationary solutions are

almost same and are similar to the results by Ghia et al. ForRe= 5,000 of (DC0)

andRe= 1,000 and 5,000 of (DC1), there are differences in the graphs by the two

stationary solutions, and the solutions on Fine mesh are more close to the results

by Ghia et al. than ones on Coarse mesh. The difference between the bound-

ary conditions is the values ofg1 at only two corners(x1,x2) = (0,1) and(1,1).

However, there are evident differences of the streamlines by the two boundary

conditions in the three Figures 7.9, 7.13 and 7.17. The similar results have been

reported by Cruchaga and Oñate [9]. They have shown the comparison of graphs

of uh1(0.5, ·) anduh2(·,0.5) for (DC0) and (DC1) withRe= 1,000, 5,000 and

10,000.

In the Figures 7.10, 7.14 and 7.18, we can see meaningful pressure contour

lines for each flow pattern, although there are oscillations. We think that these

oscillations of the pressure become small as∆t andh tend to 0, because the nu-

merical convergence of the scheme to the exact solution by means of a norm using

H1(Ω)d-norm for the velocity andL2(Ω)-norm for the pressure has been ob-

served in Subsection 7.3.1. In fact, comparing Figures 7.10, 7.14 and 7.18 with

Figures 7.11, 7.15 and 7.19, respectively, we can observe that the oscillations of

the pressure on Fine mesh are smaller than ones on Coarse mesh.
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Let us study the difference of solutions by the boundary conditions on Fine

mesh. Figure 7.20 shows graphs ofuh1(0.5, ·) anduh2(·,0.5) for the four boundary

conditions with the results by Ghia et al., which exhibit the size of boundary

layers. Now, we focus on the difference of solutions especially by the boundary

conditions (DC0) and (DC1). The difference of the graphs forRe= 5,000 is the

biggest in Figure 7.20. Detailed graphs for the Reynolds number are presented

in Figure 7.21, where (DC1/4), (DC1/2) and (DC3/4) are additional boundary

conditions to the Problem 7.1,

g1(x) =


1 (x1 ̸= 0,1, x2 = 1)

1/4 (x1 = 0,1, x2 = 1)

0 (otherwise)

, g2 = 0, (DC1/4)

g1(x) =


1 (x1 ̸= 0,1, x2 = 1)

1/2 (x1 = 0,1, x2 = 1)

0 (otherwise)

, g2 = 0, (DC1/2)

and

g1(x) =


1 (x1 ̸= 0,1, x2 = 1)

3/4 (x1 = 0,1, x2 = 1)

0 (otherwise)

, g2 = 0, (DC3/4)

respectively, and its graphs are by stationary solutions on Fine mesh by the scheme (S2)

with the same parameters, whose initial value is the stationary solution for (DC0)

to save computational time. We can see the effect of the values ofg1 at two cor-

ners,(x1,x2) = (0,1) and(1,1).
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Table 7.4: Convergence times.

t (∈ N)

Re Fine mesh Coarse mesh

(DC0): 100 15 15

1,000 85 92

5,000 370 358

(DC1): 100 15 15

1,000 87 87

5,000 390 399

(C0): 100 16 16

1,000 92 91

5,000 372 373

(C1): 100 17 17

1,000 91 90

5,000 356 360
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Figure 7.8: Graphs ofuh1(0.5, ·) anduh2(·,0.5), Re= 100, (DC0) (top left), (DC1)

(top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.9: Streamlines,Re= 100, (DC0) (top left), (DC1) (top right), (C0) (bot-

tom left) and (C1) (bottom right).

77



Figure 7.10: Pressure contour lines on Fine mesh,Re= 100,∆p = 0.01, (DC0)

(top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.11: Pressure contour lines on Coarse mesh,Re= 100,∆p= 0.01, (DC0)

(top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.12: Graphs ofuh1(0.5, ·) anduh2(·,0.5), Re= 1,000, (DC0) (top left),

(DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.13: Streamlines,Re= 1,000, (DC0) (top left), (DC1) (top right), (C0)

(bottom left) and (C1) (bottom right).
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Figure 7.14: Pressure contour lines on Fine mesh,Re= 1,000,∆p = 0.01, (DC0)

(top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.15: Pressure contour lines on Coarse mesh,Re= 1,000, ∆p = 0.01,

(DC0) (top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.16: Graphs ofuh1(0.5, ·) anduh2(·,0.5), Re= 5,000, (DC0) (top left),

(DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.17: Streamlines,Re= 5,000, (DC0) (top left), (DC1) (top right), (C0)

(bottom left) and (C1) (bottom right).
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Figure 7.18: Pressure contour lines on Fine mesh,Re= 5,000,∆p = 0.01, (DC0)

(top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).

86



Figure 7.19: Pressure contour lines on Coarse mesh,Re= 5,000, ∆p = 0.01,

(DC0) (top left), (DC1) (top right), (C0) (bottom left) and (C1) (bottom right).
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Figure 7.20: Graphs ofuh1(0.5, ·) anduh2(·,0.5) for the four boundary conditions,

(DC0), (DC1), (C0) and (C1),Re= 100 (top), 1,000 (middle) and 5,000 (bottom).
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7.3.4 Three-dimensional cavity flow problems

In this subsection we show numerical results for Problem 7.2. Considering the

boundary layers, we used nonuniform two meshes in Figure 7.22. We call the

meshes Fine and Coarse meshes, respectively, whose discretization parameters

are shown in Table 7.5. In three-dimensional case, for all the Reynolds numbers

we set∆t = 1/32 for Fine mesh and∆t = 1/24 for Coarse mesh.

The numerical solutions converged to stationary solutions in the sense of sat-

isfying the inequality (7.5). The times of convergence are listed in Table 7.6. Fig-

ure 7.23 shows the graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5) of the two station-

ary solutions on Fine and Coarse meshes for the two boundary conditions (C0-3D)

and (C1-3D) for eachRe. The graphs of the two stationary solutions are almost

same. Figures 7.24, 7.27 and 7.30 are projections of velocity vectors on each

plane for eachRe, which exhibit the flow patterns well of these problems. Pres-

sure contour lines on Fine and Coarse meshes are shown in Figures 7.25, 7.28

and 7.31 and Figures 7.26, 7.29 and 7.32, respectively. Comparing Figures 7.25,

7.28 and 7.31 with Figures 7.26, 7.29 and 7.32, respectively, we can see that the

oscillations of the pressure on Fine mesh are a little smaller than ones on Coarse

mesh. An improvement for the pressure oscillations by the scheme in both 2D and

3D is a future work.

The effect of the two boundary conditions are presented in Figure 7.33.

Table 7.5: Discretization parameters for meshes in Figure 7.22.

Mesh ♯ of nodes ♯ of elements hmin

Fine 172,965 972,288 5.16×10−3

Coarse 74,627 410,688 7.09×10−3
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Table 7.6: Convergence times.

t (∈ N)

Re Fine mesh Coarse mesh

(C0-3D): 100 12 12

400 32 32

1,000 58 58

(C1-3D): 100 11 11

400 33 33

1,000 53 53

(0, 0, 1) 

 (1, 1, 1)

 (1, 1, 1)
(0, 0, 1) 

 (1, 1, 1)

 (1, 1, 1)

Figure 7.22: Meshes used for Problem 7.2, Fine mesh(NΩ = 64), the mesh

magnified around the points(x1,x2,x3) = (0,0,1) and (1,1,1), Coarse mesh

(NΩ = 48) and the mesh magnified around the points (top to bottom).
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Figure 7.23: Graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5) for the Reynolds num-

bers,Re= 100, 400 and 1,000 (top to bottom), (C0-3D) (left) and (C1-3D) (right).
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Figure 7.24: Projections of velocity vectors on each plane,Re= 100, (C0-3D)

(left) and (C1-3D) (right).
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Figure 7.25: Pressure contour lines on each plane by Fine mesh,Re= 100,∆p =

0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.26: Pressure contour lines on each plane by Coarse mesh,Re= 100,

∆p = 0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.27: Projections of velocity vectors on each plane,Re= 400, (C0-3D)

(left) and (C1-3D) (right).
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Figure 7.28: Pressure contour lines on each plane by Fine mesh,Re= 400,∆p =

0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.29: Pressure contour lines on each plane by Coarse mesh,Re= 400,

∆p = 0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.30: Projections of velocity vectors on each plane,Re= 1,000, (C0-3D)

(left) and (C1-3D) (right).
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Figure 7.31: Pressure contour lines on each plane by Fine mesh,Re= 1,000,

∆p = 0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.32: Pressure contour lines on each plane by Coarse mesh,Re= 1,000,

∆p = 0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.33: Graphs ofuh1(0.5,0.5, ·) anduh3(·,0.5,0.5) for the two boundary

conditions, (C0-3D) and (C1-3D),Re= 100 (top), 400 (middle) and 1,000 (bot-
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Chapter 8

Conclusions

We have presented two characteristic-curve finite element schemes for the non-

stationary incompressible Navier-Stokes equations, and given two- and three-

dimensional numerical results in order to see the advantages of the schemes.

First, we have proposed a single-step characteristic-curve finite element scheme

of second order in time. The scheme uses the second order approximation of the

material derivative term by the single step method described in Subsection 3.1.2.

We have given an additional correction term for the scheme in order to realize a

second order accuracy in time. Our approximation is based on the Crank-Nicolson

method on the trajectory of the fluid particle, which is the reason why the addi-

tional correction term is required. Since the scheme is nonlinear, we have pre-

sented an internal iteration procedure. In each internal iteration the matrix is sym-

metric and identical. From this, we can use symmetric linear solvers. We have

also given numerical results which confirm the second order accuracy in time and

the importance of the additional correction term.

Next, we have presented a pressure-stabilized characteristic-curve finite el-

ement scheme. The scheme employs a cheap element P1/P1 with the penalty

pressure-stabilized method reviewed in Subsection 6.2.2. The matrix of resulting

linear system is symmetric and identical. Therefore, the scheme enables us to use

symmetric linear solvers and leads to easy large scale computations. A propo-
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sition on the stability of the scheme has been given. We have solved two- and

three-dimensional test problems and cavity flow problems. The Reynolds num-

bers are up to 10,000 in the test problems, and up to 5,000 (2D) and 1,000 (3D)

in the cavity flow problems. In the test problems, we have observed the first or-

der accuracy in both time and space. For the cavity problems in 2D and 3D, the

obtained streamlines, velocity vectors and pressure contour lines have shown the

flow patterns well. These results imply that the scheme is a reliable and can be

applied for practical problems.

The computations in this thesis were carried out on IBM eServer p5 595

(power 5, 1.9GHz) with IBM XL C/C++ Enterprise Edition V7.0 at Research

Institute for Information Technology of Kyushu University.
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