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Chapter 1

Introduction

The purpose of this thesis is to present two characteristic-curve finite element
schemes for the incompressible Navier-Stokes equations and to show two- and
three-dimensional numerical results in order to see the advantages of the schemes.

In devising the numerical schemes for the Navier-Stokes equations, a key is-
sue is how to approximate the nonlinear convection term. It is well known that the
conventional Galerkin method causes severe oscillating results for high Reynolds
number problems. To deal with this phenomenon, many kinds of approxima-
tions have been developed based on ideas such as upwinding, balancing tensor
diffusivity, streamline diffusion, least square, characteristic-curve and so on. (See
Baba and Tabata [1], Boukir et al. [3], Brooks and Hughes [5], Douglas Jr. and
Russell [10], Franca and Frey [11], Franca and Stenberg [12], Fujima et al. [14],
Gresho et al. [15], Hansbo and Johnson [18], Hughes et al. [19, 20], Hughes and
Tezduyar [21], Johnson [22], Le Beau et al. [23], Kondo et al. [26], Pironneau
[33, 34], Pironneau et al. [35],U8 [38], Tabata [39], Tabata and Fujima [42],
Tezduyar [47] and references therein.)

We focus on characteristic-curve method. The method is based on an ap-
proximation of the material derivative along the trajectory of the fluid particle,
and is natural from the physical point of view. From this the method seems to

be considered as one of the upwind type methods. Moreover, the matrix for
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the system of linear equations is symmetric and identical, which enables us to
use symmetric linear solvers. Characteristic-curve finite element schemes for the
Navier-Stokes equations of first order in time have been developed and analyzed
in Pironneau [33, 34] andifi [38]. A scheme of second order in time has been
presented and analyzed in Boukir et al. [3]. They use two-step method and ap-
proximate the material derivative by the values of two previous steps along the
trajectory. These characteristic-curve finite element schemes impose the inf-sup
condition [4, 7, 17] for the finite elements to be used.

One of the characteristic-curve schemes to be presented in this thesis is of sec-
ond order in time and of single-step. The scheme has been proposed in the author
and Tabata [32]. The material derivative is approximated in the Crank-Nicolson
way along the trajectory. The original idea of the approximation has been de-
veloped in Rui and Tabata [36] for the convection-diffusion equations, which is
extended to the Navier-Stokes equations in this thesis. As is pointed out in [36], in
the Crank-Nicolson approximation on the trajectory, an additional correction term
is indispensable to realize a second order accuracy. After supplying a correction
term for the Navier-Stokes equations, the scheme is proved to be of second order
in time. In the case of the Navier-Stokes equations the velocity is unknown and
the obtained scheme becomes nonlinear. For the solution we present an internal
iteration procedure which consists of solving a series of Stokes type equations.
The scheme has such advantages that it is of second order in time and that every
matrix to be treated is symmetric and identical. We present the numerical results
in 2D to recognize the second order accuracy in time.

The other scheme does not impose the inf-sup condition and employs P1/P1
element, i.e., velocity and pressure are both approximated by the piecewise linear
elements in triangles (2D) or tetrahedra (3D), which requires small memory to
compute and leads to easy three-dimensional computation. The scheme keeps
symmetry of the matrix for the system of linear equations. Since P1/P1 element

does not satisfy the inf-sup condition, a pressure-stabilized method in Brezzi and



Douglas Jr. [6] is used. The scheme is an implicit and mixed one, and has such
advantages that the matrix is symmetric and identical and that it is useful for large
scale computation. We call the scheme a pressure-stabilized characteristic-curve
finite element scheme, which has been developed in the author and Tabata [31]
and applied to cavity flow problems in the author [30]. The numerical results in
2D and 3D are presented, and the problems consist of test problems and cavity
flow problems. Test problems are set to see the convergence rate of the scheme to
the exact solution. Applicability of the scheme for practical problems is checked
by cavity flow problems, whose Reynolds number is up to 5,000 in 2D and 1,000
in 3D.

In the cavity flow problems we set discontinuoG@8 andC* continuous Dirich-
let boundary conditions. The classical cavity flow problem, whose Dirichlet bound-
ary condition is given by a discontinuous function on the boundary, is well known
as a benchmark one for incompressible fluid flows. Many authors solve the prob-
lem, such as Cruchaga andi@e [9], Ghia et al. [16], Kondo et al. [26], Nal-
lasamy and Prasad [29], Tabata and Fujima [42] in 2D, Fujima et al. [14], Iwatsu
et al. [24], Jiang et al. [25], Ku et al. [27] in 3D, and so on. We compute the
problem in 2D too. We have some doubt on solving the classical cavity flow prob-
lem, because the problem has no weak solution. Therefore, we also compute two
other cavity flow problems in 2D and 3D, which are regularized8yand C!
continuous functions to be used for the Dirichlet boundary condition.

The contents of this thesis are as follows. In Chapter 2 the Navier-Stokes
problem is set. The characteristic-curve method is introduced in Chapter 3. In
Chapter 4, we consider numerical integration for characteristic-curve finite ele-
ment schemes. Chapter 5 is devoted to a single-step characteristic-curve finite
element scheme of second order in time. In Chapter 6, we review two stabilized
methods for the stationary Stokes equations. In Chapter 7 a pressure-stabilized
characteristic-curve finite element scheme is studied. In the last chapter we give

conclusions of the thesis.
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Chapter 2

The Navier-Stokes equations

In this chapter we set the Navier-Stokes problem and review a scheme. After
preparing function spaces and notations in Section 2.1, the Navier-Stokes problem
is setin Section 2.2. In Section 2.3 we review a scheme based on the conventional

Galerkin method.

2.1 Preliminaries

In this section we introduce function spaces and notations to be used in this thesis.

Fundamentals of functional analysis

Let N andR be the sets of positive integers and real numbers, respectively, and
No = NU{0}. For any normed spac¥, the norm is denoted by- ||x, and for
any inner product spack, (-,-)x means the inner product. L&t andY be real

normed spaces. A mappidg. X — Y is a linear operator provided
A(C1X1 + CoX2) = C1AX + CoAX, VX1, X2 € X, V1, G2 € R.

WhenY = R, Ais called a linear functional. A linear operatdr:. X — Y is

continuous if there exists a consta@hsuch that

|AX|ly <C|X||lx, VxeX.
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Let £ (X,Y) be the set of continuous linear operators framo Y. If Y is a

Banach space, the s&(X,Y) is a Banach space with the norm

[|AX]|y

A = sup——.

| H.,iﬂ(X,Y) xexr,J [[X][x
x#0

We denote byX’ = Z(X,R) the dual space oK and by(,-) the dual pairing
betweenX andX’.
We say that a mapping(-,-) : X xY — R is a bilinear form provided
b(cixy + Coxo, Y) = C1b(X1,Y) + Cob(X2,y), VX1,%2 € X, VY €Y, Vci,C € R,
{ b(X, c1y1+Cay2) = C1b(X,y1) +C2b(X,y2), VX € X, Vy1,y2 €Y, V1,02 € R.
A bilinear formb(-,-) on X x Y is said to be continuous if there exists a constant

C such that
Ib(x,y)| <ClX[Ixlylly, V(xy)€XxY.

LetZ be a real normed space. A continuous trilinear fornXonY x Z is defined

similarly.

Sobolev spaces

Ford = 2 or 3, letQ be a bounded domain ik? with a piecewise smooth bound-
arylr =0Q,andn=(ny,---,ng)" be a unit outward normal 16 (see Figure 2.1),
where the superscrift means to transpose. For a real numpél < p < +o),
let LP(Q) be the space gb-th power summable functions d®,

LP(Q) = {(p: Q — R; @is Lebesgue measurablgpl| ro) < +00},

where
1/p
{[lowPad " a<p<io

esssup{|@(x)|; x€ Q} (p=+w),
and for real-valued and Lebesgue measurable fundtion

0llLr0) =

esssupf{ f(x); xe Q} Einf{u € R; meagx e Q; f(x) > u}:o}.

12
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Figure 2.1: The domai® and its boundary .

We set the space of test functions @n
2(Q)=Cy(Q)={peC®(Q); suppy] is compact inQ},

where supfi] is the support ofp,

suprg] = {x € Q; ¢(x) # 0}.
LetLL.(Q) be the space of locally summable functions,
LL.(Q)= {(p: Q —R; pe LK), VK : compact inQ}.

We call a vector of the forna = (ay, ---, aq) € Ng a multi-index of order

d
‘CX’ = Zlai,
i=
andDY means a differential operator,

DY = H<0_Xa

Definition 2.1. A mapping T: 2(Q) — R is called a distribution if T satisfies
the following two properties,
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e Linearity
(T, a1+ Cop2) = C1(T, d1) +Co(T, 92), V1, P2 € 2(Q), Ve, C2 €R,

e Continuity

For any sequencég;}{’; C Z(Q), which satisfies

-3dK C Q: compactset s.t.Vj, supdej] C K,

-Ya : multi-index m8|.<X|Da¢j(X)| — 0 (j — ),
Xe

it holds that
(T, ¢j) = 0(j — ).

We denote the set of distributions B¥(Q). O

Lemma 2.1. Suppose that & L} (Q) and thata € NJ is any multi-index. Then

loc

there exists a distribution Bf € 2/(Q) defined by
0°1,0)= (1) [ 1()D“p( dx v € 7(2)
DY f is called a derivative of f in the sense of distribution. O

If functions f, g € L (Q) satisfy

loc

(DY, ) =/Qg<x>¢<x> dx V€ 2(Q).

then, we writeD? f = g.
For a real numbep (1 < p < +) and an integek € Ny, we define the
Sobolev spac#/kP(Q) by

WKP(Q) = {go: Q —R; DY@eLP(Q), |a gk},

with the norm,

k 1/p
{JZO|¢’\F/)Vjﬁp(Q)} (1< p< +oo),

max{kp‘wi,w(g); 0< )< k} (p= +o),

[ @llwkpo) =

14



where|@lyip(o) is a seminorm,

1/p
{ Z HDGQOHEP(Q)} (1< p<+m),
| @lwip) =

lal=]
max{ID°@ll(); lal =i} (p=-+o).
If p=2, we usually write
HY(Q) =W*?(Q),
fork=0, 1, 2, ---. Note thatH?(Q) = L?(Q). HX(Q) is a Hilbert space with

the inner product,

(f. D) /‘DafD“gdx

|a|<k

We introduce another Hilbert spabé(Q) defined by

L3(Q) = cpe L2(Q /qodx 0

Letg: I x (0, T) — RY be a function. Throughout the thesis, we use the following

notations,
X=HYQ), M=L%Q),
V(gt) = {vex;v=g(-yyonr},
V=V(0) (= Hs(Q)%),
Q=L5(Q).

The partial derivative ¢/ dx; of a functiong is denoted byp; and the Einstein
conventiona;b; is used in place ofgﬁ':la,-bi. We define a differential operatar

» 0 J\T
DE(O"'_)Q’”.’ﬁ) .

Let p(1 < p < o) be a real number. The gradient b WLP(Q) is written as

Df:<%%,”,g%)T:<h,m7tQTeLWQW,
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Let X andY be sets, e.gX =Y = R. For vectorsac X% andb e Y9, a-b

represents
d
a-b= 4 bi = d bi.
2

By the above notations, for a functiore W-P(Q)9, we have

O-v=v,= Zl

which is the divergence of

ﬂeLp

Trace operator

Let LP(I") be the space op-th power summable functions an. From the
smoothness df , there exists a trace operatoe .2 (W1P(Q),LP(Q)) [4, 8, 40].
Forve WLP(Q), yis simply denoted by, if there is no confusion. We define
the function spacei3(Q) by

H3(Q) = {p e H'(Q); w=0}.
The following formula of integration by parts is often used in this thesis.

Theorem 2.1(Gauss-Green)Let f € W3P(Q) and ge W9(Q), wherel/p+
1/g=1and1 < p< +o. Then it holds that, for+1,--- ,d,

/ fgdx= —/ fg; dx+/ fgn ds 2.1)
Q Q r

O

Notations

We introduce additional useful notations. foj € N, let & be Kronecker’s delta
defined by

1 (i—i
5 _{ (i=1) _
0 (otherwisg

16



Q andd are often omitted from subscript of norms, e|g. |1\ is denoted by
|- [4z. WhenX = L2(Q), L?(Q)% or L%(Q)9*4, we often omit the subscript
from the notations-,-)x and|| - ||x.
Let At be a time increment and@ be a positive constant. We use two types
of time subdivisions. Since the one is used only in Chapter 5, there should be no

confusion. Len € Np. In this thesis except Chapter 5, we use definitions,
t"=nAt, Nr=[T/At]. (2.2)
In only Chapter 5, we employ other definitions,

Ao+ (n—1)At (n>1)
0 (n=0)

tn

. Nr=[(T-A0t)/M+1,  (2.3)

wherelAtg is another time increment used only in the first step of the computation.
For a functiong on Q x (0,T) or I x (0,T) and an integen (0 < n < Nr), ¢"
meansg” = ¢(-,t"). For a given sequenc@rp”}r':il in a normed spacX, we
define

[@lli=(x) = max{]|@"[[x; n=1,--- Nt },

Nt 1/2
lollz = { 3 0 -0 HlE}
n=1
Let 7, = {K} be a triangulation of2 andNe = §.%, be the total number of
elements, where the subscripmmeans representative length of the triangulation

andK is closed. We defin@y, by
Qn=int | J{K; K e %}

andl, = 0Qy. GenerallyQy, is different fromQ, and in the finite element method
every integral overQ is replaced by one ove®;,. Therefore, we prepare the
notation(-, -), asL?(Qp)-inner product.
Letl € N. We set conforming finite element spaces,
Xl ={Vh € C°(Qn)%; vhlk € A(K)?, VK € ),

L (2.4)
Mni ={dn € C°(Qn); anlk € R(K), VK € Fh},

17



whereR (K) is the space of polynomials of degregefined inK € .%,. We denote
by the same notatioiiy, the interpolation operators fro@P(ﬁ)d to X and from
C%(Q) to My,. For given finite element space§ and M, and a given vector

valued functiorgon " we define,

Vh(9) ={Vh € Xn; Va(P) =g(P), VP € I},

(2.5)
Vh =Wh(0), Qn= MhNL3(Q),

whereP is any nodal point oifi,. The norms iV, andQp, are defined by - ||y, =

I las andl] - g, = || -II.2. respectively.

2.2 Statement of the problem

Letd = 2 or 3. We consider the nonstationary Navier-Stokes problem subject to
the Dirichlet boundary condition; fin(l, p) : Q x (0,T) — RY x R such that

| % +(u-Du—D0(2vD(w) +Op=Tf inQx(0,T),
O-u=0 inQx(0,T), (2.6)

u=g onl x(0,T),

u=w inQ, att=0,
whereu = (uy, ---, ug)T is the velocity,p is the pressuref = (fq, ---, fq)T is
an external forceg = (g1, -+, 9a)" is a boundary velocity® = (1}, ---, u)"

is an initial velocity,v(> 0) is a viscosityD(u) is the strain-rate tensor defined by

1 -
Dij(u) = 5(uij+uji)  (,j=1,--.d),
and
[O(2vD(u))]; = 2vDjj j(u) (i=1,---,d).
Throughout this thesis we deal with this problem.
In order to give a variational formulation for (2.6), we prepare the following.

We define continuous bilinear fornason X x X, bon X x M and a trilinear form

18



a3 onX x X x X by

a(u,v) = 2v(D(u), D(v)), (2.7a)
b(v,q) = —(0-v, q), (2.7b)

and
ap(w,u,v) = % { <(W- O)u, v) - <(W- O)v, u) }, (2.7¢)

respectively. For functions € X which satisfied]-u= 0 andv € V, it holds the
identity,
ap(u,u,v) = ((u- O)u, v).

A variational formulation for (2.6) is to find(u, p)(t) e V(g(t)) x Q; t € (0,T)}
such that, for any € (0, T),

(%(t),v) +ag(u(t),u(t),v)

+a(u(t),v) +b(v, p(t)) = (f(t),v), WeV, (2.8)
b(u(t),q) =0 vgeQ,
and the initial condition
u(0) = u°. (2.9)
By the material derivation defined by
D 0
ot =g T8

the variational formulation (2.8) is equivalent to the equations,

(22 (1).v) +a(u(v).v) +b(v.pv) = (F(1).). WeV.

Dt (2.10)
b(u(t),q) =0, vge Q.
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2.3 A finite element scheme based on the conven-

tional Galerkin method

In this section we review a scheme for (2.6), which is analyzed in Tabata and
Tagami [46]. For the sake of simplicity, we assuf@e= Qy, throughout the sec-
tion. We choose a typical element P2/P1, which implies ¥aat X, andMy, =

Mhz1. Then, the bilinear fornb satisfies the uniform inf-sup condition [4, 7, 17] on

Vh x Qp, i.e., there exists a positive constg@titsuch that, for any,

inf sup 2V o g (2.11)

aheQnvnevh [Vhllvi 1anllQ, —

For a given sequen({eu”}wlo, we define the backward difference quotientiaft

time stepn by
u" — un—1

At
We now write the scheme discretized by the semi-implicit backward Euler

DAtUn =

method in time and by the finite element method in spaceffiofl py) € Vh(9") x
Qn n=1--- Ny} suchthat,fon=1,--- Nr,

(DacUfl, Vi) +ag (U2, ul, vi)

—f—a(UR,Vh) + b(Vh> pﬂ) (fnavh)a vVh S Vh7 (212)
b(uh,an) =0, Vah € O,
whereu? € V,(¢°) is a function approximating®.
Let (un, pn) be a solution of (2.12). For the sufficiently smooth solutjanp)

of (2.6), the scheme (2.12) has the following convergence property. There exists

a positive constar, independent ofi andAt, such that
lu—Unllizgz) + [ P— Phllizq2) < C(At+h?). (2.13)

The proof has been done in Tabata and Tagami [46].
We consider the scheme (2.12) on computational and mathematical sides. The

matrix appearing in the scheme is nonsymmetric and is not invariant at each time
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step, because @f corresponding to the nonlinear convection téum(])u. Con-
sequently, we need a nonsymmetric linear solver. From the mathematical aspect,
this scheme is reliable by the convergence property (2.13). In constructing the
numerical scheme, such error analysis is one of goals. However, since the con-
ventional Galerkin method is employed in the scheme, we need to usersamall

At for high Reynolds number problems {0v <« 1). This point is the problem of

the scheme.
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Chapter 3

The characteristic-curve method

This chapter is devoted to the study of the characteristic-curve method. The idea
of the characteristic-curve method is to consider the trajectory of the fluid particle
and discretize the material derivative term along the trajectory.

In Section 3.1, first and second order approximations of the material deriva-
tive are introduced. The first order approximation is employed for the scheme
to be presented in Chapter 7, and the second order approximation using a single
step method is used for the scheme to be proposed in Chapter 5. In Section 3.2,
characteristic-curve finite element schemes using the first and second order ap-
proximations are reviewed. The first order scheme has been proposed and ana-
lyzed in Pironneau [33, 34] andi$ [38]. The second order scheme using a multi

step method has been presented and analyzed in Boukir et al. [3].

3.1 Discretization of the material derivative

In this section we give first and second order approximations of the material

derivative.

22



3.1.1 First order approximation

We introduce the characteristic-curve method of first order in time. For a velocity
w: Q — RY, we defineX;(w,At) : Q — RY by

X1 (w, At)(X) = x— w(x)At.

We use the symbal to designate the composition of functions, e.g., for a function
@ defined inQ
(@oXa(wAb)) (X) = @(Xa (W, Ab)(X)).
Letu: Q x (0,T) — RY be a smooth function and(-;x) : (0,T) — RY be a
solution of the ordinary differential equation,

X'(t) = u(X,t) in (" 1t"),

(t) = u(X,t) in ( ) 3.1)
X(t") = x,

for a pointx € Q and an integen (1 < n < Nr) (see Figure 3.1). Then, for a

smooth functionp: Q x (0,T) — R, it holds that

Do d o 4n=1 ¢n
B X0 = e(X(0).,1) in ("), 3.2)

The material derivative ap att =t" is approximated as follows;

Do d
Bt 0 = oX(®).0
n n n—1 n—1
_ PN =KD o
_9- “’“"A)t(l(“nl’At) (x)+O(At), (3.3)

where we have used the relation,
X ("L x) = Xg (UL, At) (x) + O(AL?).

For the Navier-Stokes equations, substitutingi = 1,--- ,d) into ¢ in (3.3), we
get the approximation of the material derivativeuadtt = t",

Du u" —u" Lo X (UL At)

—(X1) =
Dt<’) At

(X) + O(At). (3.4)

23



z (=x(t) |R?

X" (= X1 At)(z) = 2 — u" H(z)At)

Figure 3.1: Trajectory of a fluid particle whose positioxstt = t".

Let us consider a scheme using the equality (3.4), and assuma"tlsaan
unknown function andi"~1 is a known function. The nonlinearity of the Navier-
Stokes equations is in the composite functifn® o X; (u"1, At). Sinceu"tis a

known function, the scheme is linear and symmetric.

3.1.2 Second order approximation

For velocitiesu, w: Q — RY, we defineXa(u,w,At) and Xy (u,w,At) : Q — RY
by

At

Xa(u, W, At)(X) = x— {u(x) +W(X—W(X)At)}57

X1(u,w,At)(x) = x— {2u(x) — w(X) } At,

respectively, wher&; is based on the Heun method.

Single step method

First, we explain a second order approximatiogf/ Dt by a single step method.
The evaluation point igX (t"~1/2),t"~1/2) which is different from the point in the
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case of the first order approximatiaix (t"),t"). From (3.2), we have

D@ o in-1/2, (n-1/2, _ O"(X(t") — " HX(t" )
E(x(t 1/2),:[ 1/2) _ A —I—O(Atz)
@"(X) — @" Lo Xo(u", UL At)(X)

_ 2
= o +O(At?),  (3.5)

where the last equality is derived by the identity, see (5.11) later,
X" 1x) = Xo(u", u" L At) (x) + O(AL3).

In the case of the Navier-Stokes equations, we obtain the approximation of the

material derivative of,

Du
Dt

u" —u" Lo Xp(u", UL At)

n—1/2y ¢n-1/2y
(X(A"2),0272) :

(X)+O(At%).  (3.6)

Details are discussed in Section 5.2.

Let us consider a scheme using the equality (3.6), and assumé fkan un-
known function andi"! is a known function. This second order approximation
usesu™ andu™1, and the scheme is nonlinear becausa'dh X,. For this prob-
lem, we give an internal iteration procedure in Chapter 5, which keeps symmetry

of the matrix appearing the procedure.

Multi (two) step method

Next, we introduce a second order approximation by a multi (two) step method
which is employed in Boukir et al. [3]. The second order approximation of the
material derivative ofp using the multi (two) step method is given by

D@,y i 1o
SoX,

B 3q0n . 4¢n—1 o )Zl(un—l’ un—Z’At) + q)n—Z o )@(un—l’ un—27 ZAI)
B 24t

(X) + O(At?).
(3.7)
We give the proof of (3.7). Since it holds that

o _ 3T —4f(t— Ay + f(t—2n)

f(t) At +0O(At?)
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for a smooth functiorf, we have

Do, ey d
o X)) = FeXt).1)|
_ 3@"(X(t) — 4" H(X (") + @M A(X("2))

2/t

+0(At?).
(3.8)
From the Taylor expansion o,
X(t—At) = X(t) — AtX(t) + %tzx”(t) +0(At3),
we get

¢ X (M) = " X" - A1)

n—-1 ny _ /4N Aiz 1 ¢N 3
" (X (") — AtX(t") + 2X(t)+O(At )

"X (™) — atX (1) + %tzx”(t”) O™ (X (M) +0(At%)

. 2
— g LR L2 A0+ 5 X1 D HX(E) + 0, (39)

where for the last equality we have used the relation,
X' (1" x) = u"(x) = 2u"1(x) — u"2(x) + O(At?)
Similarly it holds that

@A (X(E"?))
= @" %o X (U U2 200 (x) + 282X (") - D@2 (X (tM) + O(At3)
= ¢ 20X (UL U2, 280) () + 280X (1) - D (X (1) + O(2r°).
(3.10)

Combining (3.9) and (3.10) with (3.8) leads to (3.7), because the coefficient of
X"(t") - O™ 1(X(t")) vanishes.

In the case of the Navier-Stokes equations, we get the approximation of the
material derivative ofi,

Du M ey
I XMt =
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3un — 4un—1 o )Zl(un—17 un_Z,At) + un—2 o )Zl(un—lj un—z’ 2At)

oAt (X) + O(At?).

(3.11)

Now, we consider a scheme using the equality (3.11). The second order ap-
proximation needs"~2 in addition tou" andu™1 which imposes > 2, and the

scheme is linear and symmetric.

3.2 Finite element schemes based on the characteristic-

curve method

In this section we review two schemes for (2.6), which are proposed and analyzed
in Pironneau [33, 34], @i [38] and Boukir et al. [3]. For the sake of simplicity,

we assumd? = Qn and a boundary velocitg = 0 throughout the section. We
choose a typical element P2/P1, iX§,= Xn2 andMy, = Mp;. The bilinear formb
satisfies the uniform inf-sup condition (2.11) \gnx Q.

3.2.1 First order scheme

Foru,w e H1(Q)9 we define a linear forma; (u, w; At),

(M (U, W; A), V) = <U_W02(tl(w’m), vh).
We show the scheme discretized by the backward Euler method using the first
order characteristic-curve method in time and by the finite element method in
space; find{ (U, ph) }n"; C Vh x Qn such that, fon=1,--- Ny,

f7Vh), VVh € W,

Mg (WD U AL, v +a(ul, i) + b(vi, pR
{< (U, U5 8), Vi) +(UR, V) + (v, PR) 312

= (
b(up,an) =0, Vah € Qn,

O . . . . O
whereuy is a function approximating®.

Let (un, pn) be a solution of (3.12) angl, p) be the sufficiently smooth solu-
tion of (2.6). The scheme (3.12) has a convergence property, as follows. Suppose

27



o > (d—1)/2 andAt = O(h9). Then, there exists a positive const@nindepen-
dent ofh andAt, such that, for sufficiently smali andAt,

lu=Unllye ) + 1P = Phlliz2) < C(AL+h?). (3.13)
(H1) L)

For the proof, seei8i [38].

The scheme is of first order in time, and we can see the accuracy in (3.13).
The matrix appearing in the scheme (3.12) is symmetric and identical by the
first order characteristic-curve method. Therefore, we can use symmetric linear
solvers, which makes the computational time short. By using the characteristic-
curve method, the scheme is an upwind type one, and works for high Reynolds
number problems. On the other hand, it is difficult to integrate the term including

the composite functionl o X; (U1, At), for the computation.

3.2.2 Second order scheme

Foru, w, € H(Q)9 we define a linear form,(u,w, Z, At),

3u—4wo Xg (W, ¢, At) + o Xq (W, {, 2At) V)
At sy Vh -

Let (u, p) be the smooth solution of (2.6) and we assumemﬁ&tvh approximat-

(//_hz(u,W,Z;At), Vh) = (

ing ul is given. The scheme discretized by the backward Euler method using the
second order characteristic-curve method in time and by the finite element method
in space is to find (ul, p1)}NT, © Vi, x Qn such that, fon=2,--- N,

{ (M (U, U1 U2 ALY, Vi) +a(UR, Vi) + bV, PR) = (F™ W), Wi € Wy,
p— O’

b(up, An) Vh € Q.
(3.14)
The scheme (3.14) has a convergence property,
lu—Unlljom) + 1P — Prllizqz) < C(At+h?). (3.15)

under some assumptions including the condition
At < ChY/e,
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In addition to the property of the scheme (3.12), the scheme (3.14) is of second
order in time. The hypothesis thaﬁ is given is supposed. Therefore, we need to

find uﬁ of a second order approximationud by another scheme.
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Chapter 4

Numerical integration for
characteristic-curve finite element

schemes

In computation by characteristic-curve finite element schemes, it is not so easy to
integrate composite functions on triangular elements. In this chapter we show a
numerical integration procedure to compute the integrals. In Section 4.1, numer-
ical integration formulas of degree two and five are introduced. In Section 4.2,
we give our numerical integration procedure which includes an efficient element-

search algorithm.

4.1 Numerical integration formulas

LetK € % be a fixed triangular element. In this section we refer to Stroud [37]
and introduce numerical integration formulas of degree two and fiié nR?
andR?,

In order to introduce the formulas, we prepare the barycentric coordinates. Let
{R}%%! be the nodal points of the elemefiand(x;,--- ,X,) be the coordinates
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of B. Forx € RY, we define the barycentric coordinateg (x), - - ,Ag11(X))T €
RA+1 by

whereA € R is defined by

(1 ... 1]
1 d+1
Xy -+ X
A =det| * ! > 0.
G g

Figure 4.1 shows the two-dimensional barycentric coordinaieg.= 1,--- ,d +
1) is a linear function and barycentric coordinates satisfy the following properties,

d+1

Ai(Py) = &, _Zl/\i(X)Zl.

If x¢ K, thereisi, € {1,---,d+ 1} such thai;, (x) < O (see Figure 4.1 again).

)\3<0 )\2<0

T

)\1 ({E)

L 3
/ A <0 \<

Figure 4.1: The barycentric coordinatesRA.
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In the following, forfBs,- - -, By4+1 € R, we use the notatiofBs,- - -, By; Bd+1),
which is the set defined by

(Bt,-- ,Bd; Ba+1)

={(y1,---,Ya+1); (Y1,---,Yas1) is @ permutation of By, -, Ba+1) }-

Ifallthe B, i=1,---,d+1, are distinct, thert(Bu, - , Bg; Ba+1) = (d+1)!. For
example, the sdtp, p, p; q) consists of the four element&, p, p,q), (p, p,d, p),

(p,q, p,q) and(q, p, p, P).
Let f € CO(K) be a function. We set

I[f,K]E/dex 4.1)

The numerical approximation off, K] is often done by the formula of the type

N
1K= 1.K] = 3 f(a)w,

Hereg,i=1,--- N, are points irK € %, andw; e R,i=1,--- N, are called
weights. For the error term of the formuig|[f,K] = | [f,K] — I,[f,K], we define
deq Ep) by

deg Ep) = sup{k € No; En[p,K] =0, Vp € K(K)}.

When dedEy) = |, we say thaty[f, K] is a numerical integration formula of de-
greel.

Forl =2 and 5, we use a numerical integration formula of deiree
N
In[f,K;1] = meagK) Z f@)" (4.2)
i=

asly[f,K], where the notations are defined as follows.

() | =2 (see Figure 4.2 (left)) :

2 _ _ d+2—/d+2 — d4+-24+dvd+2
Nd :d+1, p:m7 q:%’
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2 .
0'%( : = ﬁ_ (I = 17 7d+1)7
for eachi, ai(z) corresponds to the following barycenter coordinates,

a?: Ay Agp) €(pyepiq) (i=1,,d+1).

(i) 1 =5, d = 2 (see Figure 4.2 (right)) :

10 (i=1)
w® = { BIE (1223 4),
1551V15 (i =5,6,7)

for eachi, ai(S) corresponds to the following barycenter coordinates,

ALd2Ag) € (Ltt)  (i=1)
(5) .

g (A1,A2,43) € (p,pra) (i=2,3,4).

(A1,A2,A3) € (r,r;s)  (i=5,6,7)

@) 1=5d=3:

Ny = 15,
t=% p1= 7_3\4/1E, = 13+§°’4¢1>57 P2 = 7+3\4/1E, Q2E%A:/T5,
a0 o s

(% (i=1)

s7g00 ~ (1=6,--,9)
|2 (i=10--,15)

(

(A1, Agg) € (LEET) (i=1)
). ] A1 Adi1) € (P1, P Pr ) (i=2,---,5)
n (A1, Ad+1) € (P2, P2, P2; G2) (i=86,---,9)

( (A1, Aga) € (11,5 5) (i=10,--,15)



Figure 4.2: The points used for the numerical integration formulas of degree two
(left) and five (right) inR?2.

4.2 Element-search algorithms

In characteristic-curve finite element schemes, we have to compute integrals of

composite functions such as,
U Lo X (Ut A d
h 1(uh ) t) -Vh OX
K

on triangular elements. We setf = uﬂ*loxl(uﬂfl,At) -Vy and the above integral
is equal tdl [f, K], which is approximated bi[f,K;l] for| =2, 5, i.e.,

I[f,K] ~ In[f,K;1] = meagK) Z f(aya.
Then, we need the value,
(@) = (o xah a0 w) (a) = o xalth a0 (") - wh(a)

fori=1,--- ,Né'). Generally, the poinl(l(uﬂfl,At)(ai(')) is not inK, although
ai(') is always inK. Therefore, we set the following problem (see Figure 4.3).
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N

Figure 4.3: The point,. and the elemerk,_in Problem 4.1.

Problem 4.1. Let 7, = {K/ }{¥*, and x € Qp, be given. FindJ € {1,---,Ne} such
that x, € K|, .

For any integef € {1,--- ,Ne}, let ()\1('), ,Aéﬁl)T be the barycentric coor-
dinates for the elemenq. It holds thatx, € K|, if and only if,

A>o0 vie{1,.d+1}. )

Foranyl € {1,---,Ne}, Iet{n}(')}f"jl1 C {1,---,Ne} U{—1} be the neighbor ele-
ment numbers for the elemelt (see Figure 4.4). We note that

() vie{l.d+1}, ¥xeK oy, A0 <0

iy it mY =—1, thenk N ={xek; AV (x)=0} £0.

Let us introduce the following simple element-search algorithm. It may be
easy to code, but it takes a lot of computational time.

Algorithm 4.1 (Simple algorithm)
01: forn=1,...,Ne, begin
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Figure 4.4: Correspondence between an elenkgnand eIementsKm<|>(i =
1, 2, 3)inR2,

02: if (C,) is satisfied, setl,=n and break
03: end
04: returnl,.

Our element-search algorithm for Problem 4.1 is an efficient one, which is
illustrated by Figure 4.5. For our algorithm, we need the e[m,%{)}?;ll for all
| € {1,--- ,Ne}. The algorithm is as follows.

Algorithm 4.2 (Efficient algorithm)
01: lpe{tl,...,Ne}: initial guess, given
02: while(1), begin

03: if (G,) is satisfied, setl,=lgpand break

04: fori=1,...,d+1, begin

05: it (A17<0) and (mM'? #-1) ), setl;=m'" and break
06: end

07: setlp=14

08: end

09: returnl..

Remark 4.1. (i) When we computgIf, Km; I], for the first numerical integration
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point, it may be the best choice to set the initial gugss in in Algorithm 4.2.
(i) If Qpn is nonconvex, we should pay attention to the initial gug#s the algo-

rithm.

Figure 4.5: An element-search order by Algorithm 4.Rf
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Chapter 5

A single-step characteristic-curve
finite element scheme of second

order in time

This chapter deals with a single-step characteristic-curve finite element scheme of
second order in time, which has been developed by the author and Tabata [32].
Throughout this chapter we sgt= 0 in the Navier-Stokes problem (2.6). The
scheme is given in the first section. In Section 5.2 the consistency of the scheme,
second order accuracy, is proved. Numerical results for a test problem are given
in Section 5.3. The importance of the additional correction term is shown in the
results. Contents of this chapter have been reported in the author and Tabata [32].

Only in this chapter, we use the definitions of time subdivisions (2.3).

5.1 The finite element scheme

In this section we present a characteristic-curve finite element scheme for the
Navier-Stokes equations. It is of single step and second order in time.

In order to present our scheme for (2.6) we prepare the following. We choose
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a typical element P2/P1, i.86, = Xp2 andMy = My, Foru, w, { € H3(Qp)¢,
p, g€ HY(Qn), r € L2(Qy) and f, g € L?(Q,)9, we define linear formssy
(u,w,r), @ha(u,{, W, p,q), Fn f and.Fpa(f,9,w) onVy andZhu on Qy by

g (UW,T) = My (U, W ; Do) + DhgU+ P,
(U, 4, W, p,q) = An2(U,{,W; &) + Do (u, W) + FPha(W, p,0),
(Bnu.an) = - (D-u,qh>h, (Frafwn) = (f,vh)h,
(Fralf,0W),vh) = %(f—i—goXl(W,At),vh)h,
where
((atuwittg).u) = (“=23EE) ) )
(s i) = (ST
(Fmt,vn) = ZV(D(u),D(vh)>h, (Puarwn) = — (0w, r)h,
<_9h2(u,w),vh> = v(D(u) +D(w) o Xy (W, At), D(vh))h

+ vAt (Dij (W)WkJ, Vhi,k) o

For{u"}}", c H3(@n)¢, {p"}NT, c HY(Qp) and{ f"}NT . < L2(Qp)9, linear forms
a4(u, p) and.Z(f,u) onV, are defined by

2

=

S

Il
—

(W, U U p" P (n>2)
dhl(u17uo7 pl) (
Frp(f" LU (n>2
Fn(f,u) = ( ) (=2
Py f1 (n=1).
In order to unify the notation we pu#u= %,u". For a given continuous function
f we setf' = My f(t") in this chapter.

We now present the scheme for (2.6); fif(dr, pﬂ)},’}il C Vh X Qp such that,
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forn=1,--- Ny,

Yo Uh, Pn) = T fh7uh in V/,
h (Un, Pn) h( ) h (S1)
0

n H /
PBpUn = in Q,

Whereuﬂ = MppWw0. Forn > 2 this is equivalent to the equations,

(ul—ul o Xo(ul, uh~t, At)
( )
At h

+v(D(U) +D(ty ™) o Xa (U 4t), D(wh)) -+ VAt ( Dy (U )it ik ),

1
+ > (D pn -+ Dpﬂ_lo Xl(uﬂ_l,At), vh> A
1

=3 (f{,‘+ £116 X (UL, At), vh)h, Y € Vi,

\ (D-UR, qh)h =0,  Voh€Qn

In the next section the scheme is shown to be of second ord¢rfar n > 2, and
of first order inAto for n= 1. By takingAty = O(At?), the whole scheme becomes

of second order in time incremeft.

Remark 5.1. (i) For vy € V,, and g, € Qy, it holds that

<<@h1Qh,Vh> = <<%’th,%>,

i.e., Zn = %], on Q,, thoughZ, is defined on &(Qy).

(i) In " (n>2), we need & and g1 to get &' and @. If 4, were used
when n= 1, we would need  which is not given as the initial condition in the
Navier-Stokes equations. This is the reason why wezis@t n= 1. In the case

of the convection-diffusion equation, such fact does not occur.

Since the scheme is nonlineariffor n > 2, we prepare amternal iteration

procedure Let { (WK, rK)}2_; € Vi x Qn be the solution of

(Wi, WL UL i) = Fp(f LU in

(5.1)
Py = 0 in Qf,

40



wherew? = u~1. (ul, pfl) is obtained as the limit of the sequenig@k, rf)1%_,.

In the real computation if the convergence criterion,

-1 k—1
WK =Wl ga + T =182y

< § (5.2)
HWhHHl(Qh)d + ||rr|§”|_2(Qh)

is satisfied for somé, we set(ull, ph) = (WK, rf). Hereg is a sufficiently small
positive constant. We note that (5.1) is a linear problemﬁandrﬁ whose matrix

IS symmetric.

Remark 5.2. One can choose other finite element spages @y, satisfying the
inf-sup condition2.11)and Q, c H1(Qy).

Remark 5.3. SchemégS1) requires that @ is a subset of H(Qy,), because the
pressure term is written in a strong form. Using a weak form for the pressure,

which requires only @ C L2(Qy,), we can derive a scheme,
Ay (Un, Pr) = F(Tn,un) NV,
Ppun =0 in Qp,

(5.3)

where § = MU,

(U, p)
| (WU U A + (U U + P (U™ P MY (n>2),
B Mg (Ut U0 Bto) + Drgut + P pt (n=1),
~ 1 At
<<@hz(W7 P, Q),Vh> =5 (U “Vh, P+ qoxl(W,At)> Y (q\M,h th,i)h- (5.4)

The last term 0{5.4)is a correction term for second order accuracyAnh This
scheme is proved to be of second ordefirin a similar way to schemgs1) by
using the analysis in the next section. Numerical experiments, however, show that
schemg?5.3) is not so stable. In fact, we could not get solutions fog 102
in Example 5.1 of Section 5.3 because of oscillation. Hence we do not use this
scheme. To make a stable scheme in a weak form of the pressure is an open

problem.
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5.2 Consistency of the scheme

In this section we assum@;, = Q for the sake of simplicity. For an integer
n(2<n<Nr), we set

1

For afunctionp onQ x (0,T) andme NU{N—1/2} U{0} (m< Nr), " means
()Um = w(atm)

Proposition 5.1 (consistency) Let n> 2. Suppose that f is a sufficiently smooth
function,(u, p) is the sufficiently smooth solution of (2.6) and thatuR—1, At)(Q),
Xo(u,u" 1 At)(Q), X1 (U0, Ato) (Q) € Q. Then for any i € Vi, it holds that

<%hz(un, u?,u™ P, P — T (7, £ U, Vh> = O(At?)|[vn], (5.5a)
<427h1(U17U07 ph) — P 1, Vh> = O(Atg)||Vh||. (5.5b)
]

We prepare some lemmas for the proof. The first one is trivial, but it is often

used.

Lemma 5.1. For a smooth function f it holds that

%(f(t)+ f(t—At)) = f(t— %)+O(Atz), (5.6a)
fty—ft—at) ., At
X = f'(t—=) O(At?). (5.6b)

[]

Letu: Q x (0,T) — RY be a smooth function. For a poirt Q, letX( - ;x)
(0,T) — RY be the solution of the ordinary differential equation (3.1). We note
that the material derivative of a functidn: Q x (0,T) — R is written as

Df d
o XO:1) = F (X(0).1). (5.7)
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Setting
X+ Xq(u,At) (X
Y1 (u,At)(x) = 1(2 )

we evaluate the equations at a point
P1/2(x) = (Yl(u”‘l,At)(x), th-1/ 2) : (5.8)

shown in Figure 5.1.

tn
tn—1/2__ _______________
n—1 d
y & QcR
X, (", Ar)(x)
z/ln—l i

Figure 5.1: The evaluation point for the consistency

Using the approximatiod, for X (t"~1), we can construct a second order dis-

cretization of the material derivative as follows.

Lemma 5.2. Let u be a sufficiently smooth function and(X", u"1, At)(Q) c Q.
Then it holds that

u"(x) —u" o Xp(u",u" L At)(x)  Du
At Dt

(P"Y2(x)) +-O(At). (5.9)

Proof. Let X be the solution of (3.1). Substituting into f in (5.7) and us-
ing (5.6b), we have

Du
Dt

u(X () —u" X (")

n—1/2y +n-1/2y

+O(At?). (5.10)
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Since the Heun method is of second order in time, we have

X(t" LX) = x— {u”(x) +ur(x—u"(x)At) }% +0(At%)

=X— {u”(x) +u (x—u"H(x)At) }% +0O(At3)

= Xo(u",u" L At)(x) + O(AL3). (5.11)
On the other hand, by (5.6a), it holds that

X(t"2:x) = Y1 (U"L, At) (x) + O(At?). (5.12)
Combining (5.11) and (5.12) with (5.10), we get (5.9). O]

Lemma 5.3. Suppose that,uf : Q x (0,T) —R%and p: Q x(0,T) — R are
sufficiently smooth functions and that(¥"~1, At)(Q) and Y% (u",u"1, At)(Q)
Q. Then for any »x Q it holds that

u" —u" Lo Xp (U, UL At)

(X) — v{DD(u”) +ODU™Y) oXl(u”‘lAt)}(x)

At
n %{Dp” +op+? oxl(u”—l,m)}(x) - %{ fny gn-1 oXl(u”_l,At)}(x)
:(%—ZVDD(u)nLDp— f> (P™Y/2(x)) + O(At?), (5.13)

where P~1/2(x) is a point defined b{5.8).

Proof. Let X(-;x) be the solution of (3.1). Substituting-2vOD(u) + Op —
f)(X(-),-) into f andt" intot in (5.6a), using the relation

X ("L x) = Xg (UL, At)(x) + O(AL?),
we have

- v{DD(u”) + oD oXl(u”_l,At)}(x) + %{Dp” +op™to Xl(u”_l,At)}(x)

. 1 n n—1 n—1

E{f 4 Lo X (u ,At)}(x)

= {~2vOD(u) + Op— 1} (P"*/2(x)) + O(at?). (5.14)
Combining (5.14) with Lemma 5.2, we get the result. Il
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Lemma 5.4. Let u: Q — RY be a sufficiently smooth function satisfyifigu = 0
in Q and X (u,At)(Q) C Q. Then for any y € V;, it holds that

- (DD(u) oxl(u,At),vh>
= (D(U) o X (u, A1), D(vh) ) + ¢ (i (U)uk j, Vi) + OB v (5.15)
Proof. SincelJ-u=0in Q, it holds that
(ui j 0 Xq (U, At), Vi j> = —((uu oXl(u,At))7j,vhi>
Ui jk © Xg (U, At) @j—ukJAt),vhi)
)
)

= (U jj o X1 (u, At ,Vh|> + At (u, ]koxl( u, At )Uk,j;Vhi>
(Ul ji oXl(U At 7Vh|> +At (ul ]kUk17Vh|> +O(At )HVhH

= — (uij o X1 (u, A'[),Vh,> — At (ui,jum,vhi’k) —|—O(A’[2)th||.
Similarly we have
(u.Joxl(u At) vh“> = ( Ui j o Xq(u,At) ) ,7th>

= <U| ji 0 X1(u,At), Vh]> — At <U| jUk,i> Vhi, k) + O(At )HVhH

= — (uj,ij oXl(U,N),Vhi> — At (Uj,iuk,jyvhi,k> + O(AL)||Vi -
Therefore, it holds that
1
<D(U) 0X1(U,At),D(Vh)> = 5{ (Ui,j OXl(U7At>7Vhi7j> + <Ui,j OX1(U,At),th,i>}

- (DD(u) oXl(u,At),vh) — At (Dij (u)uk,j,vhhk)

+O(At%) vl

which completes the proof. O

Proof of Proposition 5.1 Substitutingu"! into u in Lemma 5.4, we have
-V (DD(u”fl) oxl(unfl,At),vh)
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_ v{ (D(u“—l) o X1 (UL, AL), D(vh)> A <Di j (u“—l)ugjjl,vhi,k) } +O(A2) ||

(5.16)
Obviously it holds that
—v(DD(u”),vh) - v(D(u”),D(vh)>. (5.17)
Combining (5.16) and (5.17) with Lemma 5.3, we have
Tt B A RO R,
_ ((% ~0(@vD(u) + Op— )™ YoYU %, at),wh) +O(A8) v

Here we have used (5.6b) again. Sifieep) is the solution of (2.6), we get (5.5a).
The proof of (5.5b) is similar. [

5.3 Numerical results

In this section we show numerical resultglie- 2 to observe the numerical conver-
gence rate of the scheme. We use the CG method with ILU(0) preconditioner [2]
for solving the system of linear equations. In the scheme we have to compute

integrals of composite functions such as,
/K UL o Xo (WKL, ul =2, At) vy, dx
on triangular elements. The integrand
Ut o Xo (Wit Ul t, At

is not smooth orK. It is known that rough numerical integration causes oscilla-
tion even in the case that the stability is theoretically proved for a scheme with
exact integration, see Tabata [41] and Tabata and Fujima [44]. Hence, much at-
tention should be paid to numerical integration of composite functions. Here, we
use a numerical integration formula of degree five on each triangle described in
Section 4.1.
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Example 5.1.1n (2.6) we takeQ = (0,1)2, T = 1, and five values of,
v=1 101 1072 1073 104
The functions f andQare given so that the exact solution is
sir?(11x1) sin(27xo)
(x,t) = {1+sin(nt)} | —sir?(mxz)sin(2mxy) | - (5.18)
Y
COY(TTx1) CO TTX2)

We used FreeFem++ [13] for mesh generation. Ngtbe the division hum-
ber of each side o2 andh = 1/Ng be the representative length of each mesh.
Figure 5.2 (left) shows a sample me@, = 8). We solve the problem by the
scheme (S1). Since the convergence rate of the backward Euler scheme of the
P2/P1 Galerkin approximation @(At + h?) for the Navier-Stokes equations, e.g.,
(2.13), we choosét = h. Furthermore we sty = h? andg, = 10~°. We calcu-

latedErrp,/py defined by

[Mh2u — Unlli241(0)2) + M P — Phlliz2(@))
[UnllizH1(@y2) + [1Pnllizz(ay)
Figure 5.2 (right) shows the graph Bfrp,/p; versusit in logarithmic scale for

Errpyp1=

No = 8, 16, 32 and 64 and the values oErrpyp; and the slopes are given in
Table 5.1. We can observe a second order convergenite igure 5.3 exhibits
the graph of maximum internal iteration number verais It decreases aAt
becomes small and was equal to 3 or 44be 1/64.

Now we examine the importance of the additional correction term
vAt(Dij (u”_l)uﬂ‘jl, vhi7k> (5.19)
in the definition ofZ;,. We compare results obtained by schemes with and with-

out this term as well as the first order scheme. Dropping the term from the

scheme (S1), we get

A Un, Pr) = -2 (fh,up)  in VY,
h (Un, Pn) h( ) h (5.20)
0

n H /
PBpUn = in Q,
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1 T T T T
—&— v=1
—a— y=10"
—e— y=107?
—— \;:10'3
—a— y=10"
01 B
&
0.01 - B
2
1
0001 1 1 1 1

1/64 1/32 1/16 1/8
At

Figure 5.2: A sample mesfNo = 8) and the graph oErrpypy versusAt in

logarithmic scale

20 T T T T

15 - v=10"

10 -

v=10",102

Maximum iteration number

—

1 1 1 1
1/64 1/32 1/16 1/8
At

Figure 5.3: The graph of maximum iteration number vedsiufor eachv

wherew? = MU,

p'(u,p) =



vQ{’I:IZ(uv Zawa p, q) = e%hZ<u; Z?W 1At) + ‘@hZ(LLW) + th(Wv p, q)a
( Fha(u,w),vh) = v (D(U) + D(w) 0 Xa(WAL), D()).

The first order scheme is

1 (Un, Pr) = Py fr - in Vi,
S, (5.21)
hYh = in Qh7

whereu® = MU0,

() Mo (U UL AL + D"+ Zp (n>2),
hi(U; P) =
Mg (U W0 Atg) + Dyt + Papt (n=1).
TN = T

In the first order scheme we do not need to use a first step with a small time in-
crementAty. For the comparison with other schemes, however, we use the first
step withAtg. We solve Example 5.1 under the same condition. The results ob-
tained from the three schemes are shown in Figure 5.4 and Table 5.1. In the case
of v =1 the values oErrpyp, of the scheme (5.20) are worse than those of the
scheme (5.21). In the case wf= 1071 the results of (5.20) is better than those

of (5.21), but the slope of (5.20) is worse than that of the present scheme (S1). In
the cases = 102,103 and 10* there is no clear difference between the results

by (5.20) and (S1). These results are explained from the fact that the additional
correction term (5.19) containsand is proportional to it. These results exhibit

the necessity of the additional correction term for second ordét.in
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Figure 5.4: Comparison of convergence ordet: 1 (top left), 1071 (top center),
1072 (top right), 103 (bottom left) and 10* (bottom right)



Table 5.1: Values oErrpyp1 and slopes of the graphs in Figures 5.2 and 5.4

Present scheme (S1)

Scheme (5.20)

Scheme (5.21)

No Errpyps slope Errpypyr  slope Errpypyr  slope
v=1: 8 382x101 — 3.64x10°1 — 8.20x 1072 —
16 623x102 262 136x 101 1.42 400x 1072 1.04
32 131x102%2 225 622x102 1.13 197x 102 1.02
64 321x10°% 203 299x 1072 1.06 980x 102 1.01
v=101: 8 191x101 — 1.51x 101 — 3.09x 101 —
16 468x102 203 441x102% 178 187x101 0.73
32 113x102 205 138x 102 1.68 106x 10t 081
64 286x103% 199 508x10°° 144 576x102 0.89
v=102: 8 230x101 — 2.26x 101 — 6.98x 101 —
16 607x102 192 626x 102 1.85 441x10t 066
32 128x102 224 135x102 221 268x 101 072
64 285x10°% 217 307x 102 214 154x 101 0.80
v=103: 8 441x10? — 4.14%x 101 — 8.65x 1071 —
16 116x10! 193 113x10t 1.87 545x 101 0.67
32 285x102 202 284x 1072 2.00 334x10t 071
64 753x10°% 1.92 753%x 10 1.92 194x 101 0.78
v=10"%: 8 581x10? — 5.75x 1071 — 9.18x 1071 —
16 261x10! 115 256x 10t 1.17 639x10t 052
32 948x102 146 935x 102 145 372x101 0.78
64 313x102 160 311x 102 159 210x 10t 083
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Chapter 6

Stabilized finite element method for

the Stokes equations

In this chapter we deal with the Stokes equations, and the stabilized finite element
methods are reviewed. In Section 6.1, the Stokes equations and its variational
formulation are given. In Section 6.2 we review two stabilized finite element

methods. These are called the Galerkin least square stabilized method and the

penalty stabilized method, respectively.

6.1 Statement of the problem

We consider the stationary Stokes problem subject to the Dirichlet boundary con-
dition; find (u, p) : Q — RY x R such that
—20D(u)+Op=f inQ,
O-u=0 inQ, (6.1)
u=g onl,

whereu is the velocity,p is the pressuref, is an external force anglis a boundary

velocity. We assume that the velocityanishes on the boundafy, i.e.,g = 0,
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for the sake of simplicity. We note that the Stokes equations (6.1)ywtl0 are
linear.
Let a continuous bilinear formdn X x X be the forma defined in (2.7a) with

v = 1. A variational formulation for (6.1) is to finfu, p) € V x Q such that

a(u,v)+b(v,p) = (f,v), WeV,
(u,v) +b(v, p) = (f,v) 6.2)
b(u,q) =0, vgeQ.
Obviously, (6.2) is equivalent to the equation,
8(u,v) +b(v,p) +b(u,a) = (f,v), V(v,q) eV xQ 6.3)

6.2 Stabilized finite element schemes for the Stokes

equations

We refer to Franca and Stenberg [12] for the Galerkin least square stabilized
method and Brezzi and Douglas Jr. [6] for the penalty stabilized method. For
convenience, in this section we assufe- Qy,.

6.2.1 Galerkin least square stabilization

Let & be a positive constarlik be the diameter of elemeKte 7, and(-, )k =
(-,-)L2(kye- We define a bilinear forr# > on (X x M)? by

€CS((u,p), (v,)) = — 0 zﬁ h& (—20D(u) + Op, —20D(v) + 0g),.,
Ke

and bilinear form8S-S on (X x M)2 andFRES on X x M by

BE-S((u, p), (V@) = &(u,v) +b(v, p) +b(u,q) + €°-5((u, p), (v, q)), (6.4)

FoS(va) = (f,v) =8 5 hg(f, —20D(v) +0q)y, (6.5)
Keh

respectively.

53



LetV,, C V andQy C Q be any conforming finite element spaces, i.e., for any
fixed numberk, | € N, X, = Xk andMy, = My,. The scheme by the Galerkin least
square stabilized method is to fiid,, pn) € Vi, X Qn such that

BSS((Un, Pn), (Vh, Oh)) = FC"(Vh,Gh),  ¥(Vh,0h) € Vh % Qn. (6.6)
LetC, be a fixed constant satisfying the inverse inequality,

G Y R2[IOD(W)|2z 0 < DI b € Vi
Ke%,

For any fixedd (0 < & < C), the sufficiently smooth solutiofu, p) of (6.1) and
the solution(upy, pn) of (6.6), the scheme has the following convergence property.

There exits a constafit > 0 such that
JU—Un|| + [[p— pn]l < C(hK4+h'Fh. (6.7)

For the proof, see Franca and Stenberg [12].

The scheme with P1/P1 element

Let us consider a special element P1/P1, .= Xn1 and My = Mz, The
scheme (6.6) does not impose inf-sup condition (2.11), and we can choose a cheap
element P1/P1. ThenD(vy \K = 0 for anyK € %, andvy, € V. Therefore, we

can take any > 0 and it holds that, fotun, pn), (Vh,0h) € Vh X Qn,

BES((Un, Ph), (Vh, Gh)) = &(Un, Vi) + b(Vh, Pr) + b(Un, Gh) + h(pPh,an), (6.8)

R S(vh, ) = (f,vn) =& S hZ(f, Oan)k (6.9)
Keh

where% is a bilinear form orM x M defined by

“h(p.a)=—0 Y hg(Op, Oa)k. (6.10)
Ke%,

The error estimate (6.7) becomes

lu—=Un[lyr +[[P—pnll <Ch (6.11)
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6.2.2 Penalty stabilization with P1/P1 element

We use a cheap element P1/P1, d@.= X, andMy, = Mp;. We define a bilinear
forms on(X x M)? by

B ((U, p), (v,@)) = &(U,V) +b(V, p) + b(u,q) + h(p, ). (6.12)

The scheme by the penalty stabilized method is to findpyn) € Vi x Qn such
that

BE™((Un, Pn), (Vi Gh)) = (,Vh),  ¥(Vh, Gh) € Vh X Q. (6.13)

The equation (6.13) is equivalent to the equations,

a(un,vh) +b(vh, pr) = (f,Vh), YVh € Vi,
{ (Un,Vh) 4 b(vh, pn) = (f,Vh) h € Vh (6.14)
b

(Un, Gh) + Gh(Ph,dn) = 0, Vah € Qp.

For any fixedd > 0, the sufficiently smooth solutiofu, p) of (6.1) and the
solution (up, pn) of (6.13), the scheme has the following convergence property.

There exits a constafit > 0 such that
[[u—Un|[y2 +[[p— pnl| < Ch. (6.15)

The proof has been given in Brezzi and Douglas Jr. [6].

Let us compare the scheme (6.13) with the scheme (6.6) using P1/P1 element.
The convergence order of (6.13) is the same as one of (6.6), see (6.15) and (6.11).
For P1/P1 element, it holds that, fas, pn), (Vh, 0h) € Vh X Qh,

BEYS((Un, Ph), (Vi th)) = B ((Un, Ph), (Vh, Gn))-

Therefore, the difference of the schemes (6.6) and (6.13) is that there is or is not

the term,

-8 Y hZ(f, Oan)k
Ke

in the right hand sides. For P1/P1 element, the scheme (6.13) is simpler than the
scheme (6.6).
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Chapter 7

A pressure-stabilized
characteristic-curve finite element

scheme

This chapter is devoted to a study of a pressure-stabilized characteristic-curve
finite element scheme. The scheme is a combined one with a penalty stabiliza-
tion method introduced in Subsection 6.2.2 and the first order characteristic-curve
method explained in Subsection 3.1.1. The scheme is presented in Section 7.1 and
a proposition on the stability of the scheme is given in Section 7.2. In Section 7.3
numerical results are shown. There, test problems and cavity flow problems are
solved in 2D and 3D. Contents of this chapter are described in the author and
Tabata [31] and the author [30].

7.1 The finite element scheme

We employ a cheap element P1/P1, iX,,= X1 and My = Mp:. We define
bilinear formsa, onH(Q)9 x H(Q)9 andb, onH(Q)9 x L?(Q) by

an(u,v) = 2v(D(u), D(v)),,

56



bh(V7 CI) = - (D "V, q)h7

respectively, For a given continuous functibrwe setf” = My, " in this chapter.
We present the scheme for (2.6); fifidi}, pp) € Vh(9") xQn; n=1,--- Nt}
such that, fon=1,---, Ny,

i, Vi)h, YVh € Vi,

{ (M (U2, U5 ) Vi) + @ (U2, Vi) + b (Vi PP ©2)

= (
br(uh, ah) + €h(ph, ) = 0, Vah € Qn,

whereu® = My 0.

7.2 Stability of the scheme

Setting a seminorm: |, of My, for g, € My,

1/2
|Qh|h5{ S h&(Oan, DQh)K} ,

Keh

we define, for a given sequen{:leﬂ}wll C My,

, Nt i 1/2
‘rh||2(Mh) = {At Z |rh|h} .
n=1

For a solution{ (uf, pﬂ)}r'\]'ll of (S2), we assume the following hypothesis.

Hypothesis 7.1.There exists a positive constant mdependent of h anfit, such
that, forn=0,--- ,Ny — 1,

1
A IUR = Uho Xa (R, A0 < calugl- (H)

Remark 7.1. In the case of convection-diffusion equation whose unknown func-

tion is ¢, an inequality corresponding t@) is

1
16— o Xa (U, A) | < cal| gl
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The inequality(H) holds, if ue C°([0,T]; W1*(Q)9) [36, Lemma 1], where
Co([0,T]; WL*(Q)9) is the space of W*(Q)%-valued continuous functions in
[0, T]. Since u is the unknown function in the case of the Navier-Stokes equations,

we assuméH) and examine it numerically.
The scheme (S2) is stable under the hypothesis (H).

Proposition 7.1. Suppose that g 0 and f € C%(Q x [0,T])9. Let&(> 0) and
Atp(< 1/2) be a fixed number. Assume that for akty< Atg, Xq(up,At)(Qp) C
Qnp(Vn, 0<n< Ny —1) and the Hypothesis 7.1 hold. Then, there exists a positive
constant C, independent of h aitl such that

[[un]li=(L2) + vV [ID(Un) li2(.2) +\/3|ph||/z(,\,|h) <C(llupll + I fallizz)) - (7.2)

Proof. We fix any numben (1 < n < Ny). Substituting(up, —pp) € Vi x Qy into

(Vh, Gn) in (S2), summing the two equations, we have

1 _ _
(U= Lo Xa(U L, A0, W), + 29 D(U) 2+ 81 PR = (£, U

It holds that
(=t )+ 2v D) 2+ 8l
= (8 W= 5 (02— Lo () 0, W),
Using the inequalitiega® — b?) /2 < (a— b)aandab < (a® + b?) /2, we obtain
uc (SI12) + 2011 D)2+ o1
1,1

1
2 2
< Ul + SR+ 5

_ _ _ 2
Z(EHUE 1—uﬂ 1oXl(uﬂ 1,At)||) )

From the Hypothesis 7.1, it holds that
61—n2 2Dn25n2< nZC_%nflzi-fnZ 7.2
ot 51Unll”) +2v[[D(UR)II" + Ol Pnfh < [lunll”+ = llun ™11 + 5110117 (7.2)

Since the above inequality (7.2) holds foe= 1, -- Ny, the discrete Gronwall’'s

inequality [46] leads to the desired result (7.1). H
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Remark 7.2. Proposition 7.1 implies the solvability of the sche{B@), because

the scheme is linear itu), py).

Now, we consider the stability and advantages of the scheme (S2). Gener-
ally, for time integration, the forward Euler method yields such advantages as
symmetry of the matrix and an explicit scheme, and a disadvantage, strict choice
of time increment, e.g., for a constaBt> 0 a stability conditionAt < CI? is
required, and the backward Euler method (or Crank-Nicolson method) has the
opposite properties, i.e., the matrix is honsymmetric because of the convection
term, and stability condition is less severe. The scheme (S2) uses the backward
Euler method, and we can take lafye In fact Proposition 7.1 on the stability
holds, and neither a stability condition like¢ < Ch? nor the CFL condition [34]
is assumed in the proposition. Furthermore, the scheme has an advantage of the
characteristic-curve method, i.e., the matrix is symmetric and identical, which en-
ables us to use symmetric linear solvers. For the Navier-Stokes equations there
are two types of stabilization. The one is a pressure-stabilization which is re-
guired when the inf-sup condition of, andQy, is not satisfied. The other is a
stabilization for the nonlinear convection term. It is well known that the conven-
tional Galerkin method causes severe oscillating results for high Reynolds num-
ber problems. To deal with this phenomenon, many kinds of upwind type method
have been proposed, such as SUPG, GLS, BTD, upwinding, characteristic-curve
and so on (see Gresho et al. [15], Hughes et al. [19], Pironneau [34], Tabata and
Fujima [42], Tezduyar [47] and references therein). As explained in Section 3.1,
the characteristic-curve method is considered as an upwind type method, and we
can expect the method to stabilize nonlinear convection term. The scheme (S2)
is a combined finite element scheme with a pressure-stabilization method in Sub-
section 6.2.2 and the characteristic-curve method in Section 3.1. By the pressure-
stabilization method, we can use P1/P1 element, and by the characteristic-curve

method, the scheme works for high Reynolds number problems.
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7.3 Numerical results

In this section we show two- and three-dimensional numerical results by the
scheme (S2). We set two types of numerical example. The one is test prob-
lems to see the convergence rate to the exact solution, and the other is cavity flow
problems to show the usefulness of the scheme. We use the CG and the CR meth-
ods [28] with the point Jacobi preconditioner [2] for solving the system of linear
equations, which work for our symmetric matrix.

The two solutions using numerical integration formula of degree two and five
in Section 4.1 are almost same for Examples 7.1 and 7.2 below. Therefore, in all
the following computations we use the numerical integration formula of degree
two.

For all examples the domai@? = (0, 1) (= Qp) is an unit square. In 2D
we used only FreeFEM++ [13] for mesh generation. In 3D the finite element
subdivision of the domain is constructed by dividing the domain into a union of
triangular prisms and further subdividing each triangular prism into three tedrahe-
dra. In this process, a triangular mesh of the two-dimensional domair(0, 1)?
by FreeFem++ is used.

We setd = 0.2 for two-dimensional problems add= 0.05 for three-dimensional
problems. In Example 7.1 with = 1 andNgo = 32 we have computed five cases
0=001 0.1, 0.2, 0.3 and 1. The valué@ = 0.2 gave minimum value of error
(Errpypy defined in the following subsection) in the cases. Similarly, for Exam-
ple 7.2 withv = 1 andNg = 16, the valued = 0.05 was the best in five cases
0 =0.01, 0.04, 0.05, 0.06 and 0O1.

7.3.1 Test problems

In this subsection we séit = h and use almost uniform meshes. I(atp) and

(un, Pn) be the solutions of the problem (2.6) and the scheme (S2), respectively.
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We defineErrpy/py by

MU —Unlli2(42) + [Mha P — Pnlliz(2)
[Unllizgr) + 1 Pnllize)

Errpyp1=

Y

which represents an error. To examine Hypothesis 7.1 numerically, we set

[|up — U o Xa(up, At) |

=n
="(h,At)
Atlugli

Example 7.1(2D). In (2.6)we take T= 1, and five values of,
v=1 101 1072 1073 10*

The functions f g(= 0) and P are given so that the exact solution is the same
as(5.18)

We solve the problem foNg = 8, 16, 32, 64 and 128. Figure 7.1 (left)
shows a sample meshq = 8). Figure 7.1 (right) shows the graph Bfrpy/p;
versusAt in logarithmic scale and the values®frpy/p1 and the slopes are given
in Table 7.1. We can observe almost first order convergenct ifx= h). In
Figure 7.2 we plotted the values®%(h, At) for all steps(t = nAt). The inequality
(H) holds forc, = 7.

Example 7.2(3D). In (2.6) we take T= 1, and five values of,
v=1,10"% 1072 10°% 10°*
The functions f g and f are given so that the exact solution is

SiN(Xq + 2Xo + X3 1) — Sin(Xg + X2 + 2x3 +t)
u x) —SiN(2Xy + X2 + X3 +1) + Sin(Xg + X2 + 2x3 + 1)
X,t) =
p SiN(2x1 + X2 + X3 +t) — sin(Xy + 2xo + X3+ 1)

sin(xy + X2 + X3 +1) — 8sirf(1/2) sin(t + 3/2)

61



Table 7.1: The values drrpy/p; and slopes of the graphs in Figures 7.1 and 7.3

Example 7.1(d = 2)

Example 7.2d = 3)

No Errpypy  slope No Errpypy  slope

v=1: 8 199x10! — 107x10°t —
16 760x102 1.39 445%x 1072 1.26

32 300x102 1.34 16 174x10°2 1.35

64 136x102 1.14 32 620x10°3% 1.47

128 632x10°3 111 64 311x102% 1.00

v=10t: 8 367x10! — 830x102  —
16 204x101 0.85 368x 102 1.17

32 111x10! 0.88 16 170x 1072 1.12

64 591x102 091 32 709x10°2% 1.26

128 306x 102 0.95 64 374x10°2% 0.92

v=102: 8 714x10! — 126x 1071 —
16 453x10°1 0.66 777x10°2 0.70

32 272x10' 073 16 425x 1072 0.87

64 155x10! 081 32 212x102% 1.01

128 842x10°% 0.88 64 110x 102 0.94

v=103: 8 815x10! — 173x10°t —
16 545x10°1 0.58 136x 101 034

32 339x10! 0.69 16 857x 102 0.70

64 196x101 0.79 32 495x1072 0.79

128 108x10°! 0.87 64 277x102 0.84

v=104: 8 828x10! — 183x101 —
16 565x10°1 0.55 157x 101 022

32 359x10! 065 16 111x10! 051

64 210x10% 0.77 32 765x102 053

128 115x10°! 0.87 64 501x102 0.61
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At

Figure 7.1: A sample mesfNo = 8) and the graph oErrpy/py versusAt in

logarithmic scale, Example 7.1.

We solve the problem falo = 4, 8, 16, 32 and 64. In the case dfp = 64,
the number of nodal points is 32665, the number of elements i$865472
and DOF (Degree Of Freedom) is2B6 620. Figure 7.3 (left) shows a sample
mesh(Ng = 8). Figure 7.3 (right) exhibits the graph &frrpy/p; versusit in
logarithmic scale and the values®frpy/p; and the slopes are given in Table 7.1.
We can observe, as in results of Example 7.1, almost first order convergence in
At (=h). In the cases of = 10~2 and 10# the values of the slope increase as
At tends to small value, and we can expect the values to beM tasids to 0. In
Figure 7.4 we plotted the values8f(h, At) for all stepgt = nAt). The inequality
(H) holds forc; = 1.5.
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Figure 7.2: The values &"(h,At) in Example 7.1y = 1 (top left), 101 (top
right), 10-2 (middle left), 10°3 (middle right), 10 (bottom left).
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logarithmic scale, Example 7.2.
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right), 10-2 (middle left), 10°3 (middle right), 10 (bottom left).
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7.3.2 Application to the stationary Navier-Stokes problem

In this section we consider the following stationary Navier-Stokes problem subject
to the Dirichlet boundary condition; findi, p) : @ — RY x R such that

2 .
(u-D)u—R—eDD(u)+Dp— f inQ,
O-u=0 inQ, (7.3)
u=g onfl,

whereRe is the Reynolds number corresponding t&vl When we apply the
scheme (S2) to the problem (7.3), we need to set the funcfiogandu® in (2.6).

We employ the same given functiorisandg in (7.3) for (2.6). For the initial
velocity w0 in (2.6) we use the solution of the stationary Stokes problem (6.1)
with the same function$ andg in (7.3). Then, solving the scheme (S2), we find

numerical stationary solution of (2.6) as a solution of (7.3).

Remark 7.3. Since { is the solution of the stationary Stokes problem which is not

given explicitly, we compute the solutiomy, ry) € Vih(g) x Qy of the problem;
8h(Wh, Vh) +bn(Vh, ') 4 Bn(Wh, Gh)+ Gh(rh, ah) = (fa, Vh),
V(Vh, 0h) € Vh X Qn, (7.4)
whereédy, is a, with v = 1, and set ﬂ = Wh.

We set two-dimensional cavity flow problems with four Dirichlet boundary

conditions.

Problem 7.1 (2D). In (7.3) we take f= 0, Re= 100, 1,000 and 5,000, and

consider four boundary conditions as follows (see Figure 7.5).

1 0,1, xo=1

01(¥) = { parole=l) ©=0.  (DCO)
0 (otherwisg
1

0100 = { be=b ©=0.  (DCY)
0 (otherW|se
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) - {4x1<1xl> (X2 = 1) "o o)

0 (otherW|se
A (1-x1)}° (%o =
0100 { {a(1-x)}" (= | G0, 1)
0 (otherW|se)

The problem with the boundary condition (DCO) or (DC1) is known as a
benchmark one. The difference between the boundary conditions (DCO0) and (DC1)
is the values of); at only two cornergxs,x2) = (0,1) and(1,1). In the cases of
the boundary conditions (DCO0) and (DC1), there does not exist a weak solution,

e., (u,p) € HY(Q)? x L?(Q). But we set these problems to compare with the
preceding results by Ghia et al.[16] and see the the difference of valugsabf
the two corners. We can regularize these problems by considering the boundary
conditions (CO) or (C1).

Below is three-dimensional cavity flow problems with andC! continuous

Dirichlet boundary conditions.

Problem 7.2(3D). In (7.3)we take f=0, Re= 100 400and1,000, and consider

two boundary conditions as follows (see Figure 7.6).

16X1(1—X1)X2(1—X2) (X3 )
91(X) = { (

otherwisg

’ O2=03= 07 (CO'3D)

2 P
) - {{16x1(1x1)xz(1xz)} (X3 = 1) g0 (CL3D)

0 (otherwise

Letn; = [t/At] be the step number fore N. Setting a norm

1
1% Dllrxz = \/—@HVHHML [l

in the product space(Q)9 x L?(Q), fort € N\ {1} we defineDiff by

H(Unt ph) (u Eflvpﬁfl)HHleZ
Uy PR ) [x L2

which represents a difference of the solutions at titreasdt — 1.

Diff, =

)
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Figure 7.5: The statement of cavity flow problems in 2D (top) and graphs of
01(-,1) for the boundary conditions (DCO) (middle left), (DC1) (middle right),
(CO) (bottom left) and (C1) (bottom right).
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Figure 7.6: The statement of cavity flow problems in 3D (top) and graphs of
gi(+,+,1) for the boundary conditions (C0-3D) (bottom left) and (C1-3D) (bottom
right).
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7.3.3 Two-dimensional cavity flow problems

In this subsection we show numerical results for Problem 7.1. Considering the
boundary layers, we used nonuniform meshes refined near the boundary. Fig-
ure 7.7 shows the meshes, and we call the meshes Fine and Coarse meshes, re-
spectively. These two meshes are similar around the center of the domain. The
discretization parameters for the meshes are shown in Table 7.2, Wwhgres

a minimum element size. Table 7.3 shows value&totised for Problem 7.1.

For high Reynolds number problems an approximation of the nonlinear convec-
tion term is important. In the scheme, the approximation depends on nohonly

but alsoAt. This is the reason why we change the valuedtofccording to the

Reynolds numbers.

Table 7.2: Discretization parameters for meshes in Fig 7.7.

Mesh  of nodes f{ of elements Bmin

Fine 11470 21914 276x10°3
Coarse 5403 10,282 552x10°°

Table 7.3: Values of\t used for Problem 7.1.

At
Re Fine mesh Coarse mesh
100 1/100 1/50
1,000 1/200 1/100
5,000 1/800 1/400

The numerical solutions converged to stationary solutions in the sense of sat-
isfying the inequality
Diff, < 107°. (7.5)
The times of convergence are listed in Table 7.4. Since we have défiffedor

onlyt € N\ {1}, the times in the table are integers. For eRehFigures 7.8, 7.12
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and 7.16, Figures 7.9, 7.13 and 7.17 show the graphg 8.5, ) andupy(+,0.5)

of the two stationary solutions on Fine and Coarse meshes, and the streamlines
on Fine mesh, respectively. Figures 7.10, 7.14 and 7.18 and Figures 7.11, 7.15
and 7.19 exhibit the pressure contour lines of stationary solutions on Fine and
Coarse meshes, respectively. For the boundary conditions (DC0) and (DC1), we
plot the results by Ghia et al. [16] in the graphs. In the cases of the boundary
conditions (C0) and (C1), the graphs by the two stationary solutions are almost
same, and the streamlines exhibit the flow patterns well.

In the cases of the boundary conditions (DCO0) and (DC1), although there does
not exist a weak solution, the numerical solution exists. e 100 and 1000
of (DCO0) andRe= 100 of (DC1), the graphs by the two stationary solutions are
almost same and are similar to the results by Ghia et alRieet 5,000 of (DCO0)
andRe= 1,000 and 5000 of (DC1), there are differences in the graphs by the two
stationary solutions, and the solutions on Fine mesh are more close to the results
by Ghia et al. than ones on Coarse mesh. The difference between the bound-
ary conditions is the values @f at only two cornergxs,x2) = (0,1) and(1,1).
However, there are evident differences of the streamlines by the two boundary
conditions in the three Figures 7.9, 7.13 and 7.17. The similar results have been
reported by Cruchaga andi@te [9]. They have shown the comparison of graphs
of up1(0.5,-) andupy(-,0.5) for (DCO) and (DC1) withRe= 1,000, 5,000 and
10,000.

In the Figures 7.10, 7.14 and 7.18, we can see meaningful pressure contour
lines for each flow pattern, although there are oscillations. We think that these
oscillations of the pressure become smalbasndh tend to 0, because the nu-
merical convergence of the scheme to the exact solution by means of a norm using
H1(Q)%-norm for the velocity and_?(Q)-norm for the pressure has been ob-
served in Subsection 7.3.1. In fact, comparing Figures 7.10, 7.14 and 7.18 with
Figures 7.11, 7.15 and 7.19, respectively, we can observe that the oscillations of

the pressure on Fine mesh are smaller than ones on Coarse mesh.
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Let us study the difference of solutions by the boundary conditions on Fine
mesh. Figure 7.20 shows graphsigf(0.5, -) andun,(-, 0.5) for the four boundary
conditions with the results by Ghia et al., which exhibit the size of boundary
layers. Now, we focus on the difference of solutions especially by the boundary
conditions (DCO0) and (DC1). The difference of the graphsRee= 5,000 is the
biggest in Figure 7.20. Detailed graphs for the Reynolds number are presented
in Figure 7.21, where (DC1/4), (DC1/2) and (DC3/4) are additional boundary
conditions to the Problem 7.1,

Xl#ovla X2 = 1)
a(X)=4¢1/4 (x¢x=0,1, xo=1), 9 =0, (DC1/4)

otherwiseg

91(X)=41/2 (xx=0,1,x=1), =0, (DC1/2)

(
(
(
(1 (#0,1, x=1)
(
(

otherwiseg
and
1 (x1 #0,1, xp=1)
01X)=4¢3/4 (=01, %=1, =0, (DC3/4)
0  (otherwisg

respectively, and its graphs are by stationary solutions on Fine mesh by the scheme (S2)
with the same parameters, whose initial value is the stationary solution for (DCO0)

to save computational time. We can see the effect of the valugsaiftwo cor-
ners,(xg,x2) = (0,1) and(1,1).
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Table 7.4: Convergence times.

t (eN)
Re Fine mesh Coarse mesh
(DCO): 100 15 15
1,000 85 92
5,000 370 358
(DC1): 100 15 15
1,000 87 87
5,000 390 399
(CO): 100 16 16
1,000 92 91
5,000 372 373
(C1): 100 17 17
1,000 91 90
5,000 356 360
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Figure 7.8: Graphs afy; (0.5, -) andupy(-,0.5), Re= 100, (DCO) (top left), (DC1)
(top right), (CO) (bottom left) and (C1) (bottom right).
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),

Figure 7.9: Streamline®e= 100, (DCO) (top left), (DC1) (top right), (CO) (bot-
tom left) and (C1) (bottom right).
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Figure 7.10: Pressure contour lines on Fine mé&sh-= 100,Ap = 0.01, (DCO)
(top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.11: Pressure contour lines on Coarse ntesh, 100,Ap=0.01, (DCO)
(top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.12: Graphs af;,;(0.5,-) andupy(+,0.5), Re= 1,000, (DCO) (top left),
(DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.13: Streamline®e= 1,000, (DCO) (top left), (DC1) (top right), (CO)
(bottom left) and (C1) (bottom right).
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Figure 7.14: Pressure contour lines on Fine m&sh 1,000,Ap = 0.01, (DCO)
(top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.15: Pressure contour lines on Coarse mBgh; 1,000, Ap = 0.01,
(DCO) (top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.16: Graphs af;,;(0.5,-) andupy(+,0.5), Re= 5,000, (DCO) (top left),
(DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.17: Streamline®e= 5,000, (DCO) (top left), (DC1) (top right), (CO)
(bottom left) and (C1) (bottom right).

85



Figure 7.18: Pressure contour lines on Fine m&sh 5,000,Ap = 0.01, (DCO)
(top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.19: Pressure contour lines on Coarse mBgh; 5,000, Ap = 0.01,
(DCO) (top left), (DC1) (top right), (CO) (bottom left) and (C1) (bottom right).
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Figure 7.20: Graphs af,;(0.5,-) andup,(+, 0.5) for the four boundary conditions,
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Figure 7.21: Graphs afy1(0.5,-) andupy(+,0.5) for the five boundary conditions,
(DCO0), (DC1/4), (DC1/2), (DC3/4) and (DC1), and its magnified ones (top to
bottom),Re= 5,000.
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7.3.4 Three-dimensional cavity flow problems

In this subsection we show numerical results for Problem 7.2. Considering the
boundary layers, we used nonuniform two meshes in Figure 7.22. We call the
meshes Fine and Coarse meshes, respectively, whose discretization parameters
are shown in Table 7.5. In three-dimensional case, for all the Reynolds numbers
we setAt = 1/32 for Fine mesh andt = 1/24 for Coarse mesh.

The numerical solutions converged to stationary solutions in the sense of sat-
isfying the inequality (7.5). The times of convergence are listed in Table 7.6. Fig-
ure 7.23 shows the graphswf; (0.5,0.5, -) andupg(+,0.5,0.5) of the two station-
ary solutions on Fine and Coarse meshes for the two boundary conditions (C0-3D)
and (C1-3D) for eaclRe The graphs of the two stationary solutions are almost
same. Figures 7.24, 7.27 and 7.30 are projections of velocity vectors on each
plane for eaciRe which exhibit the flow patterns well of these problems. Pres-
sure contour lines on Fine and Coarse meshes are shown in Figures 7.25, 7.28
and 7.31 and Figures 7.26, 7.29 and 7.32, respectively. Comparing Figures 7.25,
7.28 and 7.31 with Figures 7.26, 7.29 and 7.32, respectively, we can see that the
oscillations of the pressure on Fine mesh are a little smaller than ones on Coarse
mesh. An improvement for the pressure oscillations by the scheme in both 2D and
3D is a future work.

The effect of the two boundary conditions are presented in Figure 7.33.

Table 7.5: Discretization parameters for meshes in Figure 7.22.

Mesh  of nodes f of elements Pmin

Fine 172965 972288 516x 103
Coarse 74627 410688 709x 1073
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Table 7.6: Convergence times.
t (eN)
Re Fine mesh Coarse mesh
(C0-3D): 100 12 12
400 32 32
1,000 58 58
(C1-3D): 100 11 11
400 33 33
1,000 53 53

TS Aty
o
s
l%ﬁm%"'
i
i
NI
vﬁ'%ﬁ (i
A
KON
RPN
NIRRTy
KA
I
e

SResExRe
SIS
R0

A
5l
o

1Ay
N

A

XA
KK
A
1
A
N
X
VA
il
NV
A
oAk
N
I
KB
¥

AN
LR o
LS e
aomm
SN u,,a,,u;uhv;mf,a
NN L
AN L ]
SRR sttt
i
SRR L
AR 7 gl
RN iy W il
il
i

X
§4
Ry

%

i
i
o

o
K
o
Iy

vef
0
N
44

I

)

ﬁ
it

TR SN
ESNNSRNSNNN:
BRI

7

171
1

0

YAk

)

/1040,
T 77

4174

777

AR Jandate

AR 7 o
AETEENAANE RN W
AR ARRRRRRR AR RR SERSE: A
T i
R T
AN w
N i

7

SRR i i
‘\‘\‘gtl:::‘ W ;‘r,‘,;‘w;;u W
NSNRRERNAY : it
AR i
AR AR i
R i
AR i o
SN i
o
i

RNSRRRRE !

N NRRRRAY il
AR i i
AL i

!
0
u,,,a;g

NN
AN
AR
RV
NN
W
AR

A )
NN
A
IR
AN
A

i
i

NRRRNRY
NRRRR
SRR
AR
N AR RRRARRARAA it o
SIRIANARN NARRRRRERRAY it g
HEAANANS RN b
R AN il
AR o i iy
A AR 0} 7 AR
SNRNERE RN Y

7y
R 0 i
N
Nt
o 7%
el
i

NVRRA
NN
R 7
NN
SRR /

9%

1414 A A A Y Y 4 A
A P P P ot Pt P A 20 2 4 455455

115501 0 A A P ¥ Y Y Y )

N
AR
AR

SASR
AR

V7
G

Figure 7.22: Meshes used for Problem 7.2, Fine mgé¢h = 64), the mesh
magnified around the points«,x2,x3) = (0,0,1) and (1,1,1), Coarse mesh

(Ng = 48) and the mesh magnified around the points (top to bottom).

91



u;(0.5,0.5,.) u;(0.5,0.5,.)
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
1 T T 1 1 T T 1
—— Fine mesh —— Fine mesh
——————— Coarse mesh ------- Coarse mesh
0.75 405 0.75 405
o o
< S
d n 5 n
<X 05 0 s X 05 0 S
% %
=] =]
0.25 -4 -05 0.25 -4 -05
0 . . a o . . 1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X1 X1
u;(0.5,0.5,.) u;(0.5,0.5,.)
-1 -0.5 0 05 1 -1 -0.5 0 05 1
1 T T 1 1 T T 1
—— Fine mesh —— Fine mesh
——————— Coarse mesh ------ Coarse mesh
0.75 <405 0.75 -4 05
— PN
) )
S S
g wn g wn
X 05 0 g X 05 0 =
~ ~
= ]
=] =]
0.25 4-05 0.25 4-05
0 | L 1 0 L L -1
0 0.25 0.5 0.75 1 0 0.25 05 0.75 1
X1 X1
u;(0.5,0.5,.) u;(0.5,0.5,.)
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
1 T T 1 1 T T 1
—— Fine mesh —— Fine mesh
——————— Coarse mesh ------- Coarse mesh
0.75 405 0.75 405
o o
S S
d n b n
X 05 0 g % 05 0 a3
% %
=] =]
0.25 -4 -05 0.25 -4 -05
0 . . 1 0 . . 1
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
X1 X1

Figure 7.23: Graphs af;;(0.5,0.5,-) andups(-,0.5,0.5) for the Reynolds num-
bers,Re= 100, 400 and 1000 (top to bottom), (C0-3D) (left) and (C1-3D) (right).
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Figure 7.25: Pressure contour lines on each plane by Fine iResh100,Ap =
0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.26: Pressure contour lines on each plane by Coarse Resh100,
Ap = 0.0025, (C0O-3D) (left) and (C1-3D) (right).
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Figure 7.28: Pressure contour lines on each plane by Fine iResh400,Ap =
0.0025, (C0-3D) (left) and (C1-3D) (right).
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Figure 7.29: Pressure contour lines on each plane by Coarse Resh400,
Ap = 0.0025, (C0O-3D) (left) and (C1-3D) (right).
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Figure 7.31: Pressure contour lines on each plane by Fine resh,1,000,
Ap = 0.0025, (C0O-3D) (left) and (C1-3D) (right).
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Figure 7.32: Pressure contour lines on each plane by Coarse Reshl, 000,
Ap = 0.0025, (C0O-3D) (left) and (C1-3D) (right).
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Chapter 8

Conclusions

We have presented two characteristic-curve finite element schemes for the non-
stationary incompressible Navier-Stokes equations, and given two- and three-
dimensional numerical results in order to see the advantages of the schemes.

First, we have proposed a single-step characteristic-curve finite element scheme
of second order in time. The scheme uses the second order approximation of the
material derivative term by the single step method described in Subsection 3.1.2.
We have given an additional correction term for the scheme in order to realize a
second order accuracy in time. Our approximation is based on the Crank-Nicolson
method on the trajectory of the fluid particle, which is the reason why the addi-
tional correction term is required. Since the scheme is nonlinear, we have pre-
sented an internal iteration procedure. In each internal iteration the matrix is sym-
metric and identical. From this, we can use symmetric linear solvers. We have
also given numerical results which confirm the second order accuracy in time and
the importance of the additional correction term.

Next, we have presented a pressure-stabilized characteristic-curve finite el-
ement scheme. The scheme employs a cheap element P1/P1 with the penalty
pressure-stabilized method reviewed in Subsection 6.2.2. The matrix of resulting
linear system is symmetric and identical. Therefore, the scheme enables us to use

symmetric linear solvers and leads to easy large scale computations. A propo-
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sition on the stability of the scheme has been given. We have solved two- and
three-dimensional test problems and cavity flow problems. The Reynolds num-
bers are up to 10,000 in the test problems, and up to 5,000 (2D) and 1,000 (3D)
in the cavity flow problems. In the test problems, we have observed the first or-
der accuracy in both time and space. For the cavity problems in 2D and 3D, the
obtained streamlines, velocity vectors and pressure contour lines have shown the
flow patterns well. These results imply that the scheme is a reliable and can be
applied for practical problems.

The computations in this thesis were carried out on IBM eServer p5 595
(power 5, 1.9GHz) with IBM XL C/C++ Enterprise Edition V7.0 at Research
Institute for Information Technology of Kyushu University.
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