This is a webpage of Hirofumi Notsu, PhD(Math) RG RM CV
Professor, Kanazawa University

What's New:
  • Accepted: D.O. Medeiros, H. Notsu and C.M. Oishi.   Second-order finite difference approximations of the upper-convected time derivative.   To appear in SIAM Journal on Numerical Analysis.  
    arXiv:2106.02950[math.NA]

  • Preprint: J.S.H. Simon and H. Notsu.   Maximizing vortex for the Navier-Stokes flow with a convective boundary condition: A shape design problem.
    arXiv:2108.03925 [math.OC]

  • Preprint: K. Futai, N. Kolbe, H. Notsu and T. Suzuki.   A mass-conservative Lagrange-Galerkin scheme of second order in time for convection-diffusion problems.
    arXiv:2107.10019[math.NA]

  • Published: K. Goto, K. Nakajima and H. Notsu.   Twin vortex computer in fluid flow. New Journal of Physics, Vol.23(2021), 063051.   doi:10.1088/1367-2630/ac024d
    Press Release: English, Japanese1, Japanese2, Japanese3
    EurekAlert!, Asia Research News

  • Preprint: J.S.H. Simon and H. Notsu.   Vorticity maximization of a linear fluid flow via volume constrained and perimeter regularized shape optimization.
    arXiv:2104.09741[math.NA]

  • Published: I. Wijaya and H. Notsu.   Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media.   Discrete & Continuous Dynamical Systems - S, Vol.14(2021), 1197-1212.
    doi:10.3934/dcdss.2020234 arXiv:1901.09499[math.NA]

  • Published: M.M. Murshed, K. Futai, M. Kimura and H. Notsu.   Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition.   Discrete & Continuous Dynamical Systems - S, Vol.14(2021), pp.1063-1078. doi:10.3934/dcdss.2020230 arXiv:1901.05725[math.NA]

  • Published: T. Taniguchi, N. Akashi, H. Notsu, M. Kimura, H. Tsukahara, K. Nakajima.   Chaos in nanomagnet via feedback current. Physical Review B, Vol.100(2019), 174425. doi:10.1103/PhysRevB.100.174425 arXiv:1909.05315

  • Published: M. Kimura, K. Matsui, A. Muntean and H. Notsu.   Analysis of a projection method for the Stokes problem using an ε-Stokes approach. Japan Journal of Industrial and Applied Mathematics, Vol.36(2019), pp.959-985.
    doi:10.1007/s13160-019-00373-3
    view-only page
    arXiv:1812.10250[math.AP]

  • 研究紹介記事: 流体シミュレーションの数理(2). 数学セミナー, 2019年5月号, pp.81-85.   Link

  • 研究紹介記事: 流体シミュレーションの数理(1). 数学セミナー, 2019年4月号, pp.68-72.   Link

  • Published: M. Kimura, H. Notsu, Y. Tanaka and H. Yamamoto.   The gradient flow structure of an extended Maxwell viscoelastic model and a structure-preserving finite element scheme.   Journal of Scientific Computing, Vol.78(2019), pp.1111-1131.
    doi:10.1007/s10915-018-0799-2
    view-only page
    arXiv:1802.05566[math.NA]