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Program

∗ All lectures are given by invited speakers.

Monday, February 19

16:55 – 17:00 Opening

Session 1 (5 talks) Chair: H. Notsu: JST 17:00 – 20:05

(= UTC 08:00 – 11:05 = CET 09:00 – 12:05 = PST 00:00 – 03:05)

17:00 – 17:50 Enrique Zuazua (University of Erlangen-Nuremberg, DE)

Control and Machine Learning

17:50 – 18:15 Romit Maulik (Pennsylvania State University, US)

Turbulence modeling for large-eddy simulations using neural differential

equations

18:15 – 18:40 Marius Zeinhofer (Simula Research Laboratory, NO)

Error analysis for physics-informed neural networks

18:40 – 18:50 Break

18:50 – 19:15 Cristopher Salvi (Imperial College London, UK)

Scaling limits of random recurrent-residual neural networks

19:15 – 20:05 Pantelis R. Vlachas (ETH Zurich, CH)

Adaptive online learning of effective dynamics for complex systems across

scales
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Tuesday, February 20

Session 2 (5 talks) Chair: TBD: JST 17:00 – 20:05

(= UTC 08:00 – 11:05 = CET 09:00 – 12:05 = PST 00:00 – 03:05)

17:00 – 17:50 Boumediene Hamzi (California Institute of Technology, US)

Bridging Machine Learning, Dynamical Systems, and Algorithmic Infor-

mation Theory: Insights from Sparse Kernel Flows and PDE Simplifi-

cation

17:50 – 18:15 Guglielmo Gattiglio (University of Warwick, UK)

Nearest Neighbor GParareal: Improving Scalability of Gaussian Pro-

cesses for Parallel-in-Time Solvers

18:15 – 18:40 Jianyu Hu (Nanyang Technological University, SG)

A structure-preserving kernel method for the learning of Hamiltonian

systems

18:40 – 18:50 Break

18:50 – 19:15 James Louw (Nanyang Technological University, SG)

Error bounds for forecasting causal dynamics with universal reservoirs

19:15 – 20:05 Massimiliano Tamborrino (University of Warwick, UK)

Network inference in a stochastic multi-population neural mass model

via approximate Bayesian computation
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Wednesday, February 21

Session 3 (6 talks) Chair: TBD: Session 3: JST 17:00 – 20:05

(= UTC 08:00 – 11:05 = CET 09:00 – 12:05 = PST 00:00 – 03:05)

17:00 – 17:25 Yasamin Jalalian (California Institute of Technology, US)

Data-efficient kernel methods for PDE Identification

17:25 – 17:50 Theo Bourdais (California Institute of Technology, US)

Computational Hypergraph Discovery for the data-driven recovery of dif-

ferential equations

17:50 – 18:15 Matthieu Darcy (California Institute of Technology, US)

One-shot learning of stochastic differential equations with Gaussian pro-

cesses

18:15 – 18:40 Samuel Mercer (Delft University of Technology, NL)

Discrete to continuum: total variation flow

18:40 – 18:50 Break

18:50 – 19:15 Masato Hara (Kyoto University, JP)

A reservoir computing method for dynamical systems on general differ-

entiable manifolds

19:15 – 20:05 Alessandro Corbetta (Eindhoven University of Technology, NL)

Machine learning turbulent cascades: inference and closure

20:05 – 20:10 Closing
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Abstract

T. = Title, A. = Abstract.

1. Enrique Zuazua (University of Erlangen-Nuremberg, DE)

T. Control and Machine Learning

A. In this lecture we shall present some recent results on the interplay between

control and Machine Learning, and more precisely, Supervised Learning

and Universal Approximation.

We adopt the perspective of the simultaneous or ensemble control of

systems of Residual Neural Networks (ResNets). Roughly, each item to

be classified corresponds to a different initial datum for the Cauchy prob-

lem of the ResNets, leading to an ensemble of solutions to be driven to

the corresponding targets, associated to the labels, by means of the same

control.

We present a genuinely nonlinear and constructive method, allowing to

show that such an ambitious goal can be achieved, estimating the complex-

ity of the control strategies.

This property is rarely fulfilled by the classical dynamical systems in Me-

chanics and the very nonlinear nature of the activation function governing

the ResNet dynamics plays a determinant role. It allows deforming half

of the phase space while the other half remains invariant, a property that

classical models in mechanics do not fulfill.

This viewpoint opens up interesting perspectives to develop new hybrid

mechanics-data driven modelling methodlogies.

This lecture is inspired in joint work, among others, with Borjan

Geshkovski (MIT), Carlos Esteve (Cambridge), Domenec Ruiz-Balet (IC,

London) and Dario Pighin (Sherpa.ai).

2. Romit Maulik (Pennsylvania State University, US)

T. Turbulence modeling for large-eddy simulations using neural differential

equations

A. Differentiable fluid simulators are increasingly demonstrating value as use-

ful tools for developing data-driven models in computational fluid dynam-

ics (CFD). Differentiable turbulence, or the end-to-end training of machine

learning (ML) models embedded in CFD solution algorithms, captures both

the generalization power and limited upfront cost of physics-based simu-

lations, and the flexibility and automated training of deep learning meth-
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ods. We develop a framework for integrating deep learning models into

a generic finite element numerical scheme for solving the Navier-Stokes

equations, applying the technique to learn a sub-grid scale closure using a

multi-scale graph neural network. We demonstrate the method on several

realizations of flow over a backwards-facing step, testing on both unseen

Reynolds numbers and new geometry. We show that the learned closure

can achieve accuracy comparable to traditional large eddy simulation on

a finer grid that amounts to an equivalent speedup of 10x. As the desire

and need for cheaper CFD simulations grows, we see hybrid physics-ML

methods as a path forward to be exploited in the near future.

3. Marius Zeinhofer (Simula Research Laboratory, NO)

T. Error analysis for physics-informed neural networks

A. In this talk, we discuss error estimates for physics-informed neural networks

(PINNs) for a wide range of linear PDEs, including elliptic, parabolic and

hyperbolic equations. For the analysis, we propose an abstract framework

in the language of bilinear forms, and we show the required continuity and

coercivity estimates for the mentioned equations. Our results illustrate

that the L2 penalty approach that is commonly employed for boundary

and initial conditions provably leads to a pronounced deterioration in con-

vergence mode.

4. Cristopher Salvi (Imperial College London, UK)

T. Scaling limits of random recurrent-residual neural networks

A. I will present some scaling limit results for random recurrent and residual

neural networks when width and depth tend to infinity. When the acti-

vation function is the identity, I will show that the limiting object is a

Gaussian measure on some space of paths and its covariance agrees with

the so-called signature kernel.

5. Pantelis R. Vlachas (ETH Zurich, CH)

T. Adaptive online learning of effective dynamics for complex systems across

scales

A. Predictive simulations are crucial in various applications, including weather

forecasting, material design, and understanding complex dynamic systems.

The effectiveness of these simulations largely depends on their ability to
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accurately model and predict the dynamics of the systems they repre-

sent. Traditional approaches to simulation face challenges: high-fidelity,

massively parallel simulations, while detailed and accurate, are computa-

tionally expensive and limit the scope for experimentation. On the other

hand, reduced-order models, which are computationally less demanding, of-

ten oversimplify the dynamics through linearization and heuristic closures,

compromising accuracy.

This presentation explores how advancements in machine learning (ML)

technologies, particularly Convolutional Neural Networks (CNNs), Recur-

rent Neural Networks (RNNs), and Mixture Density Networks (MDNs),

can overcome these limitations. These ML models, enhanced with novel

training strategies, can forecast the high-dimensional dynamics of chaotic

systems, identify and propagate reduced-order latent dynamics over time

with minimal loss in accuracy, and capture complex stochastic behav-

iors in molecular dynamics. The efficacy of these data-driven approaches

is demonstrated through standard benchmarks, including the Kuramoto-

Sivashinsky equation for chaotic systems, the Lorenz-96 system for atmo-

spheric dynamics, and Alanine Dipeptide for molecular dynamics simula-

tions, showcasing their potential as predictive tools.

Further, the presentation introduces a pioneering systematic framework

termed Adaptive Learning of Effective Dynamics (AdaLED), which builds

on the Equation-Free paradigm. AdaLED bridges the gap between detailed

large-scale simulations and reduced-order models by adaptively extracting

and forecasting the effective dynamics of multiscale systems. It employs

autoencoders for dimensionality reduction and an ensemble of probabilistic

RNNs for time-stepping, allowing for an efficient alternation between com-

putational simulations and surrogate modeling. This process accelerates

the simulation of known dynamics and facilitates the exploration of new

dynamic regimes through continuous online adaptation. AdaLED’s perfor-

mance is validated on diverse systems, including the Van der Pol oscillator,

2D reaction-diffusion equations, and 2D Navier-Stokes flow, demonstrating

its ability to dynamically learn and adjust to new conditions, thus offer-

ing a significant advantage for applications that require numerous complex

simulations. This novel framework represents a significant leap forward in

computational dynamics, providing a versatile and powerful tool for pre-

dictive modeling.
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6. Boumediene Hamzi (California Institute of Technology, US)

T. Bridging Machine Learning, Dynamical Systems, and Algorithmic Informa-

tion Theory: Insights from Sparse Kernel Flows and PDE Simplification

A. This presentation delves into the intersection of Machine Learning, Dy-

namical Systems, and Algorithmic Information Theory (AIT), exploring

the connections between these areas. In the first part, we focus on Ma-

chine Learning and the problem of learning kernels from data using Sparse

Kernel Flows. We draw parallels between Minimum Description Length

(MDL) and Regularization in Machine Learning (RML), showcasing that

the method of Sparse Kernel Flows offers a natural approach to kernel

learning. By considering code lengths and complexities rooted in AIT, we

demonstrate that data-adaptive kernel learning can be achieved through

the MDL principle, bypassing the need for cross-validation as a statistical

method.

Transitioning to the second part of the presentation, we shift our atten-

tion to the task of simplifying Partial Differential Equations (PDEs) using

kernel methods. Here, we utilize kernel methods to learn the Cole-Hopf

transformation, transforming the Burgers equation into the heat equation.

We argue that PDE simplification can also be seen as an MDL and a

compression problem, aiming to make complex PDEs more tractable for

analysis and solution. While these two segments may initially seem dis-

tinct, they collectively exemplify the multifaceted nature of research at the

intersection of Machine Learning, Dynamical Systems, and AIT, offering

preliminary insights into the synergies that arise when these fields converge.

7. Guglielmo Gattiglio (University of Warwick, UK)

T. Nearest Neighbor GParareal: Improving Scalability of Gaussian Processes

for Parallel-in-Time Solvers

A. With the advent of supercomputers, multi-processor environments and

parallel-in-time (PiT) algorithms provide ways to integrate ordinary dif-

ferential equations (ODEs) over long time intervals, a task often unfeasi-

ble with sequential time-stepping solvers within realistic timeframes. A

recent approach, GParareal, combines machine learning (Gaussian Pro-

cesses) with traditional PiT methodology (Parareal) to achieve faster par-

allel speed-ups. Unfortunately, the applicability of the model is limited

to a small number of computer cores and ODE dimensions. We present

Nearest Neighbor GParareal (NN-GParareal), a data-enriched parallel-in-
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time integration algorithm that builds upon GParareal by improving its

scalability properties for higher dimensional systems and increased proces-

sor count. Through data reduction, the model complexity is reduced from

cubic in the sample size to loglinear, yielding a fast, automated procedure

to integrate initial value problems over long intervals. The practical utility

of NN-GParareal is demonstrated theoretically and empirically through its

evaluation on nine different systems. Our analysis offers tangible evidence

of NN-GParareal’s behavior, advantages, and validity.

8. Jianyu Hu (Nanyang Technological University, SG)

T. A structure-preserving kernel method for the learning of Hamiltonian sys-

tems

A. In this talk, we present a structure-preserving kernel method for the learn-

ing of Hamiltonian systems. In the presentation, we shall start by estab-

lishing reproducing properties of differentiable kernels on any subsets of

R2d, which enables us to embed the corresponding RKHS into the space

of bounded differentiable functions with bounded derivatives. We then

study the Hamiltonian learning problem using a kernel ridge regression,

we provide an operator-theoretical framework to represent the structure-

preserving kernel estimators, and we prove convergence results and error

bounds for them. Finally, we present some numerical experiments.

9. James Louw (Nanyang Technological University, SG)

T. Error bounds for forecasting causal dynamics with universal reservoirs

A. For a few decades state-space systems have been used in the learning and

prediction of input-output systems. In particular, the recent emergence

of reservoir computing as a highly competitive learning strategy with nu-

merous applications has motivated study in this area. While much work

has been done in establishing universality properties of state-space systems

in approximating input-output systems, and learnability of dynamical sys-

tems via embedding properties, not much research exists in establishing

the accuracy of predictions implemented via this learning strategy. To this

end we present our work, establishing bounds for the prediction error as

a function of the forecasting horizon when learning input-output systems

in the class of causal chains with infinite memory using reservoir comput-

ers. Causal chains include time series coming from the observations of

a large class of dynamical systems and many other applications, such as
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finite-dimensional observations from functional differential equations and

the deterministic parts of stochastic processes. In our work we illustrate

how the theory of nonuniform hyperbolicity and Lyapunov exponents plays

a vital role in the rate at which estimation accuracy deteriorates. Most no-

tably, the Multiplicative Ergodic Theorem of Oseledets is the cornerstone

of the results, revealing the underlying structures and limitations of this

prediction strategy.

10. Massimiliano Tamborrino (University of Warwick, UK)

T. Network inference in a stochastic multi-population neural mass model via

approximate Bayesian computation

A. The aim of this work is to infer the connectivity structures of brain re-

gions before and during epileptic seizure. Our contributions are fourfold.

First, we propose a 6N-dimensional stochastic differential equation for mod-

elling the activity of N coupled populations of neurons in the brain. This

model further develops the (single population) stochastic Jansen and Rit

neural mass model, which describes human electroencephalography (EEG)

rhythms, in particular signals with epileptic activity. Second, we construct

a reliable and efficient numerical scheme for the model simulation, extend-

ing a splitting procedure proposed for one neural population. Third, we

propose an adapted Sequential Monte Carlo Approximate Bayesian Com-

putation algorithm for simulation-based inference of both the relevant real-

valued model parameters as well as the 0,1-valued network parameters, the

latter describing the coupling directions among the N modelled neural pop-

ulations. Fourth, after illustrating and validating the proposed statistical

approach on different types of simulated data, we apply it to a set of multi-

channel EEG data recorded before and during an epileptic seizure. The real

data experiments suggest, for example, a larger activation in each neural

population and a stronger connectivity on the left brain hemisphere during

seizure.

11. Yasamin Jalalian (California Institute of Technology, US)

T. Data-efficient kernel methods for PDE Identification

A. For many problems in computational sciences and engineering, observa-

tional data exists for which the underlying physical models are not known.

PDE identification methods provide systematic ways to infer these physical

models directly from data. We introduce a framework for identifying and
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solving PDEs using kernel methods. In particular, given observations of

PDE solutions and source terms, we employ a kernel-based data-driven ap-

proach to learn the functional form of the underlying equation. We prove

convergence guarantees and a priori error estimates for our methodology.

Through numerical experiments, we demonstrate that our approach is par-

ticularly competitive in the data-poor regime where few observations are

available.

12. Theo Bourdais (California Institute of Technology, US)

T. Computational Hypergraph Discovery for the data-driven recovery of dif-

ferential equations

A. Most scientific challenges can be framed into one of the following three

levels of complexity of function approximation. Type 1: Approximate an

unknown function given input/output data. Type 2: Consider a collection

of variables and functions, some of which are unknown, indexed by the

nodes and hyperedges of a hypergraph (a generalized graph where edges

can connect more than two vertices). Given partial observations of the vari-

ables of the hypergraph (satisfying the functional dependencies imposed by

its structure), approximate all the unobserved variables and unknown func-

tions. Type 3: Expanding on Type 2, if the hypergraph structure itself is

unknown, use partial observations of the variables of the hypergraph to

discover its structure and approximate its unknown functions. While most

Computational Science and Engineering and Scientific Machine Learning

challenges can be framed as Type 1 and Type 2 problems, many scientific

problems can only be categorized as Type 3. Despite their prevalence,

these Type 3 challenges have been largely overlooked due to their inherent

complexity. Although Gaussian Process (GP) methods are sometimes per-

ceived as well-founded but old technology limited to Type 1 curve fitting,

their scope has recently been expanded to Type 2 problems.

In this talk, we introduce an interpretable GP framework for Type 3

problems, targeting the data-driven discovery and completion of computa-

tional hypergraphs. Our approach is based on a kernel generalization of

(1) Row Echelon Form reduction from linear systems to nonlinear ones and

(2) variance-based analysis. Here, variables are linked via GPs, and those

contributing to the highest data variance unveil the hypergraph’s struc-

ture. We illustrate the scope and efficiency of the proposed approach with

applications to differential equations discovery.
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13. Matthieu Darcy (California Institute of Technology, US)

T. One-shot learning of stochastic differential equations with Gaussian pro-

cesses

A. We consider the problem of learning the drift f and diffusion of stochastic

differential equations (SDE) of the form dXt = f(Xt) dt+ σ(Xt) dWt from

one sample trajectory. These types of equations are widely used in areas

like finance or the geophysical and planetary sciences to model stochastic

dynamics. This problem is more challenging than learning deterministic

dynamical systems because one sample trajectory only provides indirect

information on the unknown functions f andσ. We propose a method that

places a Gaussian process prior on the unknown functions and computes

their maximum a posteriori (MAP) estimator given the data. We also

leverage efficient methods to learn the kernel (or covariance) functions of

the Gaussian processes from the data with cross-validation or maximum

likelihood estimation (MLE).

Our approach not only allows us to predict future dynamics but also

provides an uncertainty quantification of such prediction. We illustrate the

efficacy of our method through numerical experiments and an application

to the prediction of laboratory earthquakes.

14. Samuel Mercer (Delft University of Technology, NL)

T. Discrete to continuum: total variation flow

A. In this talk we will present some results on discrete to continuum limits

for Cauchy problems on a sequence of Banach spaces. In particular by

investigating the structure of a discrete to continuum limit and using this

to motivate a general framework we call Banach stacking. Our work is mo-

tivated by recent developments using the TLp(Ω) metric for Γ-convergence

results, inspired further from the theory of optimal transport.

We then apply these results to deduce uniform convergence of total vari-

ation flow along TL1(Ω) from discrete to continuum.

15. Masato Hara (Kyoto University, JP)

T. A reservoir computing method for dynamical systems on general differen-

tiable manifolds

A. Reservoir computing is a kind of machine learning method which can learn

and reproduce various information on nonlinear dynamics. Researchers
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have been trying to reveal its mechanism of learning dynamics. In the the-

oretical study of reservoir computing, it is natural and helpful to impose

some “good” properties such as structural stability or ergodicity for target

systems for learning. Taking into account that reservoir computing is usu-

ally defined on Euclidean spaces, however, those good properties are not

satisfied by typical chaotic systems such as the Henon map and the Lorenz

system, as these are known to be not structurally stable in the usual sense.

On the other hand, typical dynamical systems that are structurally stable

are often defined on a closed manifold, such as the torus or the sphere. We

therefore would like to formulate the scheme of reservoir computing that

allow the target dynamical systems to be defined on manifolds. In this talk,

I will discuss the formulation of such a reservoir computing method and

show some numerical examples including a hyperbolic toral automorphism.

16. Alessandro Corbetta (Eindhoven University of Technology, NL)

T. Machine learning turbulent cascades: inference and closure

A. Turbulence, the ubiquitous and chaotic state of fluid motions, is character-

ized by strong, multiscale, and statistically nontrivial fluctuations of the

velocity field. This has opened longstanding fundamental challenges with

vast technological relevance. For instance, turbulent fluctuations hinder

convergence of statistical estimators, making even the bare quantification

of the turbulence intensity or of the Reynolds number highly demanding

in terms of data volumes. Also, high-statistical fidelity closure models,

parametrizing the influence of small unresolved scales on the dynamics of

large, resolved ones, remain outstanding. In this talk, I will discuss the

capability of recent deep neural models at learning features of turbulent

velocity signals. First, I will show how deep neural networks can accu-

rately estimate the Reynolds number within 15% accuracy, from a statis-

tical sample as small as two large-scale eddy turnover times. In contrast,

physics-based statistical estimators are limited by the convergence rate of

the central limit theorem and provide, for the same statistical sample, at

least a hundredfold larger error. Second, I will present a closure, based

on a deep recurrent network, that quantitatively reproduces, within sta-

tistical errors, Eulerian and Lagrangian structure functions and the inter-

mittent statistics of the energy cascade, including those of subgrid fluxes.

To achieve high-order statistical accuracy, and thus a stringent statisti-

cal test, I consider shell models of turbulence. These results encourage
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the development of similar approaches for three-dimensional Navier-Stokes

turbulence.

In collaboration with R. Benzi, V. Menkovski, G. Ortali, G. Rozza,

F. Toschi.

Refs.

– G. Ortali, A. Corbetta, G. Rozza, F Toschi. Numerical proof of shell

model turbulence closure. Phys. Rev. Fluids. 7, L082401, 2022.

– A. Corbetta, V. Menkovski, R. Benzi, F. Toschi. Deep learning velocity

signals allows to quantify turbulence intensity. Sci. Adv. 7: eaba7281,

2021.
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