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Program

∗ All lectures are given by invited speakers.

Monday, February 20

16:55 – 17:00 Opening

Session 1 (5 talks) Chair: H. Notsu: JST 17:00 – 20:05

(= UTC 08:00 – 11:05 = CET 09:00 – 12:05 = PST 00:00 – 03:05)

17:00 – 17:45 Houman Owhadi (California Institute of Technology, US)

On solving/learning nonlinear PDEs with GPs

17:45 – 17:55 Break

17:55 – 18:40 Pantelis R. Vlachas (ETH Zurich/AI2C Technologies, Switzerland)

Learning and forecasting the effective dynamics of complex systems

across scales

18:40 – 18:50 Break

18:50 – 19:15 Yasamin Jalalian (California Institute of Technology, US)

Forecasting Hamiltonian dynamics with computational graph completion

19:15 – 19:40 Jonghyeon Lee (California Institute of Technology, US)

Forecasting dynamical systems from irregularly-sampled data with kernel

methods

19:40 – 20:05 Saad Qadeer (Pacific Northwest National Laboratory, US)

Machine-learning-based spectral methods for partial differential equations

Tuesday, February 21

Session 2 (6 talks) Chair: TBD: JST 17:00 – 20:10

(= UTC 08:00 – 11:10 = CET 09:00 – 12:10 = PST 00:00 – 03:10)

17:00 – 17:45 Boumediene Hamzi (California Institute of Technology, US)

Kernel Flows and Kernel Mode Decomposition for learning dynamical

systems from data
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17:45 – 17:55 Break

17:55 – 18:20 Jinqiao Duan (Illinois Institute of Technology, US)

Nonlocal Kramers–Moyal formulas and data science

18:20 – 18:45 James V. Koch (Pacific Northwest National Laboratory, US)

Structural inference of networked dynamical systems

18:45 – 18:55 Break

18:55 – 19:20 Jun Okamoto (Kyoto University, Japan)

On a singular limit of the Kobayashi–Warren–Carter energy

19:20 – 19:45 Rui Carvalho (Durham University, UK)

Automatically identifying dynamical systems from data

19:45 – 20:10 Lingkai Kong (Georgia Institute of Technology, US)

Momentum Stiefel optimizer, with applications to suitably-orthogonal at-

tention, and optimal transport

Wednesday, February 22

Session 3 (6 talks) Chair: TBD: Session 3: JST 17:00 – 20:10

(= UTC 08:00 – 11:10 = CET 09:00 – 12:10 = PST 00:00 – 03:10)

17:00 – 17:45 Lyudmila Grigoryeva (University of St. Gallen, Switzerland, and

University of Warwick, UK)

Reservoir kernels and Volterra series

17:45 – 17:55 Break

17:55 – 18:20 Daiying Yin (Nanyang Technological University, Singapore)

Learnability of linear port-Hamiltonian systems

18:20 – 18:45 Giovanni Ballarin (University of Mannheim, Germany)

Memory of recurrent networks: Do we compute it right?

18:45 – 18:55 Break
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18:55 – 19:20 Satoshi Sunada (Kanazawa University/JST PRESTO, Japan)

Neural delay differential equations and their physical implementations

19:20 – 19:45 Andrew Flynn (University College Cork, Ireland)

From seeing double to modelling seizure dynamics with multifunctional

reservoir computers

19:45 – 20:10 Tina Mai (Duy Tan University, Vietnam, and Texas A&M University,

US)

Prediction of numerical upscaling for Richards equation using deep learn-

ing

20:10 – 20:15 Closing
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Abstract

T. = Title, A. = Abstract.

1. Houman Owhadi (California Institute of Technology, US)

T. On solving/learning nonlinear PDEs with GPs

A. We present a simple, rigorous, and unified framework for solving and learn-

ing arbitrary nonlinear PDEs with Gaussian Processes (GPs). The pro-

posed approach: (1) provides a natural generalization of collocation kernel

methods to nonlinear PDEs and Inverse Problems, (2) has guaranteed con-

vergence for a very general class of PDEs, and (3) comes with a Bayesian

interpretation compatible with a UQ pipeline. It inherits (1) the a pri-

ori error bounds of kernel interpolation methods and (2) the (near-linear)

state-of-the-art computational complexity of linear solvers for dense ker-

nel matrices. Its generalization to high-dimensional and parametric PDEs

comes with error bounds exhibiting a tradeoff between dimensionality and

regularity (the curse of dimensionality disappears when the problem is suf-

ficiently regular). Its formulation can be interpreted and generalized as an

extension of Gaussian Process Regression from the approximation of in-

put/output functions to the completion of arbitrary computational graphs

representing dependencies between multiple known and unknown functions

and variables.

2. Pantelis R. Vlachas (ETH Zurich/AI2C Technologies, Switzerland)

T. Learning and forecasting the effective dynamics of complex systems across

scales

A. Predictive simulations of complex systems are essential for applications

ranging from weather forecasting to drug design. The veracity of these pre-

dictions hinges on their capacity to capture the effective system dynamics.

Massively parallel simulations predict the system dynamics by resolving all

spatiotemporal scales, often at a cost that prevents experimentation while

their findings may not allow for generalisation. On the other hand reduced

order models are fast but limited by the frequently adopted linearization

of the system dynamics and/or the utilization of heuristic closures. Here

we present a novel systematic framework that bridges large scale simula-

tions and reduced order models to Learn the Effective Dynamics (LED) of

diverse complex systems. The framework forms algorithmic alloys between

non-linear machine learning algorithms and the Equation-Free approach
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for modeling complex systems. LED deploys autoencoders to formulate a

mapping between fine and coarse-grained representations and evolves the

latent space dynamics using recurrent neural networks. The algorithm is

validated on benchmark problems and we find that it outperforms state

of the art reduced order models in terms of predictability and large scale

simulations in terms of cost. LED is applicable to systems ranging from

chemistry to fluid mechanics and reduces the computational effort by up

to two orders of magnitude while maintaining the prediction accuracy of

the full system dynamics. We argue that LED provides a novel potent

modality for the accurate prediction of complex systems.

3. Yasamin Jalalian (California Institute of Technology, US)

T. Forecasting Hamiltonian dynamics with computational graph completion

A. Hamiltonian dynamics describe many different physical systems and have

wide range of applications from classical to statistical and quantum me-

chanics. As such, data-driven simulations of Hamiltonian systems are im-

portant tools for solving many scientific and engineering problems and have

thus been more widely explored during recent years. In this work, we com-

bine the newly developed framework for computational graph completion

(CGC) with numerical techniques for data-adaptive kernel regression to

interpolate and forecast Hamiltonian systems in a data-driven way. The

CGC framework allows us to characterize the dependencies between the un-

knowns of the system and approximate them by imposing Gaussian priors

and computing MAP estimators given the available data. We demonstrate

that our method is both accurate and data-efficient on a variety of phys-

ical problems including mass-spring systems, a nonlinear pendulum, and

the Hénon–Heiles system.

4. Jonghyeon Lee (California Institute of Technology, US)

T. Forecasting dynamical systems from irregularly-sampled data with kernel

methods

A. A highly efficient way to predict the future of a dynamical system is to

interpolate its vector field with a kernel, where the kernel parameters are

learned with an algorithm called Kernel Flows (KF), which uses gradient-

based optimization to learn a kernel. However, the classical KF algorithm

fails if the observed time series is not regularly sampled in time. In our

paper, we solve this problem with a generalization of the flow map of the
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dynamical system by incorporating time differences between observations

in the KF data-adapted kernels; this simple modification leads to a greater

forecasting accuracy upon comparison with the original KF algorithm.

5. Saad Qadeer (Pacific Northwest National Laboratory, US)

T. Machine-learning-based spectral methods for partial differential equations

A. A major obstacle in the deployment of spectral methods is the choice of

appropriate bases for trial and test spaces. If chosen suitably, these ba-

sis functions lead invariably to well-posed discretized problems and well-

conditioned linear systems, while the resulting approximate solutions are

provably high-order accurate. However, barring domain decomposition ap-

proaches, devising such functions for arbitrary geometries from scratch is a

hugely challenging task. Fortunately, recently developed operator learning

approaches for approximating solution operators, e.g., DeepONets, Fourier

Neural Operators, etc., suggest a highly promising route for generating

machine-learned basis functions. In this talk, we propose a Galerkin ap-

proach for time-dependent PDEs that is powered by basis functions gleaned

from the DeepONet architecture. We shall outline our procedure for ob-

taining these basis functions and detail their many favourable properties.

Next, we shall present the results of numerical tests for various problems,

including advection, advection-diffusion, viscous and inviscid Burgers’,

Korteweg–De Vries, and Kuramoto–Sivashinsky equations. Finally, we will

identify potential obstacles in the course of generalization to higher dimen-

sions and suggest possible remedies.

6. Boumediene Hamzi (California Institute of Technology, US)

T. Kernel Flows and Kernel Mode Decomposition for learning dynamical sys-

tems from data

A. Regressing the vector field of a dynamical system from a finite number of

observed states is a natural way to learn surrogate models for such systems.

We present variants of the method of Kernel Flows as simple approaches

for learning the kernel that appear in the emulators we use in our work.

First, we will talk about the method of parametric and nonparametric

kernel flows for learning chaotic dynamical systems. We’ll also talk about

learning dynamical systems from irregularly-sampled time series as well as

from partial observations. We will also introduce the method of Sparse

Kernel Flows and apply it to learn 132 chaotic dynamical systems. Finally,
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we extend the method of Kernel Mode Decomposition to design kernels in

view of detecting critical transitions in some fast-slow random dynamical

systems.

7. Jinqiao Duan (Illinois Institute of Technology, US)

T. Nonlocal Kramers–Moyal formulas and data science

A. Dynamical systems in engineering and science are usually under random

fluctuations (either Gaussian or non-Gaussian noise). Observational, ex-

perimental and simulation data for such systems are noisy and abundant.

The governing laws for complex dynamical systems are sometimes not

known or not completely known.

This presentation is about extracting stochastic governing laws from

noisy data for dynamical systems under non-Gaussian fluctuations, by non-

local Kramers–Moyal formulas. I will also compare this approach with the

(local) Kramers–Moyal formulas in classical case when noisy fluctuations

are Gaussian.

This is a joint work with Yang Li and Yubin Lu.

8. James V. Koch (Pacific Northwest National Laboratory, US)

T. Structural inference of networked dynamical systems

A. Data-driven modeling of dynamical systems has experienced a surge in the

method development in concert with advances in machine learning and

artificial intelligence. In this work, we restrict our scope specifically to

the problem of data-driven modeling of networked systems; a challenging

problem in which one needs to elicit not only the intrinsic physics of indi-

vidual nodes of the network, but also what nodes talk to whom and how

that communication influences nodal behaviors. The implication of such

methodology is far-reaching—one can begin to infer properties of networked

systems with respect to network topology and/or external perturbations,

answering hypotheticals such as “what would happen if we remove this

node?”

9. Jun Okamoto (Kyoto University, Japan)

T. On a singular limit of the Kobayashi–Warren–Carter energy

A. We consider the singular limit problem of a single-well Modica–Mortola en-

ergy and the Kobayashi–Warren–Carter energy. In this study, we introduce
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a finer topology of sliced graph convergence of functions into the function

space and derive the singular limit of a single-well Modica–Mortola energy

and the Kobayashi–Warren–Carter energy energies in the sense of Gamma-

convergence. The energy functional obtained as this singular limit is also

shown to have the remarkable property of a minimizing function that is

concave concerning the strength of jumps of a function.

10. Rui Carvalho (Durham University, UK)

T. Automatically identifying dynamical systems from data

A. Discovering governing equations from data provides a clearer understand-

ing of the world around us. Scientists have recently deployed machine

learning to develop prediction models representing the expansion of many

natural occurrences over time. Here, we present our automatic regression

for governing equations (ARGOS) method to extract dynamical systems

from noisy data. We expand several linear and nonlinear examples to de-

velop a systematic comparison between the identification performance of

ARGOS and the recently proposed SINDy with AIC. Our results show

that ARGOS demonstrates a higher identification probability for systems

of ordinary differential equations contaminated with state measurement

noise.

11. Lingkai Kong (Georgia Institute of Technology, US)

T. Momentum Stiefel optimizer, with applications to suitably-orthogonal at-

tention, and optimal transport

A. This talk will report a construction of momentum-accelerated gradient de-

scent algorithms on Riemannian manifolds, focusing on a particular case

known as Stiefel manifold. The treatment will be based on, firstly, the

design of continuous-time optimization dynamics on the manifold, and

then a thoughtful time-discretization that preserves all geometric struc-

tures. Since Stiefel manifold corresponds to matrices that satisfy orthogo-

nality constraint, two practical applications will also be described: (1) we

markedly improved the performance of trained-from-scratch Vision Trans-

former by appropriately placing orthogonality into its self-attention mech-

anism, and (2) our optimizer also makes the useful notion of Projection

Robust Wasserstein Distance for high-dim. optimal transport even more

effective.
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12. Lyudmila Grigoryeva (University of St. Gallen, Switzerland, and

University of Warwick, UK)

T. Reservoir kernels and Volterra series

A. A universal kernel is constructed whose sections approximate any causal

and time-invariant filter in the fading memory category with inputs and

outputs in a finite-dimensional Euclidean space. This kernel is built using

the reservoir functional associated with a state-space representation of the

Volterra series expansion available for any analytic fading memory filter. It

is hence called the Volterra reservoir kernel. Even though the state-space

representation and the corresponding reservoir feature map are defined on

an infinite-dimensional tensor algebra space, the kernel map is character-

ized by explicit recursions that are readily computable for specific data sets

when employed in estimation problems using the representer theorem. We

showcase the performance of the Volterra reservoir kernel in a popular data

science application in relation to bitcoin price prediction.

Paper: https://arxiv.org/abs/2212.14641

Joint work with Lukas Gonon (Imperial College London) and Juan-Pablo

Ortega (NTU, Singapore)

13. Daiying Yin (Nanyang Technological University, Singapore)

T. Learnability of linear port-Hamiltonian systems

A. A well-specified parametrization for single-input/single-output (SISO) lin-

ear port-Hamiltonian systems amenable to structure-preserving supervised

learning is provided. The construction is based on normal form control-

lable and observable Hamiltonian representations for those systems, which

reveal fundamental relationships between classical notions in control the-

ory and crucial properties in the machine learning context, like structure-

preservation and expressive power. More explicitly, it is shown that the

equivalence classes of system automorphisms of linear port-Hamiltonian

systems can be explicitly identified with a smooth manifold endowed with

global Euclidean coordinates, which allows concluding that the parame-

ter complexity necessary for the replication of the dynamics is only O(n)

and not O(n2), as suggested by the standard parametrization of these sys-

tems. Furthermore, we show that linear port-Hamiltonian systems can be

learned while remaining agnostic about the dimension of the underlying

data-generating system. Numerical experiments show that this method-

ology can be used to efficiently estimate linear port-Hamiltonian systems
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out of input-output realizations, making the contributions in this paper

the first example of a structure-preserving machine learning paradigm for

linear port-Hamiltonian systems based on explicit representations of this

model category.

14. Giovanni Ballarin (University of Mannheim, Germany)

T. Memory of recurrent networks: Do we compute it right?

A. Numerical evaluations of memory capacity (MC) of linear recurrent net-

works reported in the literature often contradict known theoretical bounds.

In this paper, we study the case of linear echo state networks, for which

total memory capacity is proven to be equal to the range of the Kalman

controllability matrix. We shed light on various issues that lead to inac-

curate numerical estimations of the memory. We investigate and explain

in detail the consequences of neglecting them and we prove that when the

Krylov structure of linear MC is ignored, it introduces a “memory gap”

between its theoretical and empirical values. As a solution, we develop

robust numerical approaches by exploiting a neutrality result of MC with

respect to the input mask matrix. Simulations show that memory curves

which fully agree with the theory are recovered using the proposed meth-

ods.

Joint work with Lyudmila Grigoryeva and Juan-Pablo Ortega.

15. Satoshi Sunada (Kanazawa University/JST PRESTO, Japan)

T. Neural delay differential equations and their physical implementations

A. Recent work has revealed an interesting connection between deep neural

networks and dynamical systems. In this context, the layer-to-layer infor-

mation propagation in neural nets can be expressed as the time evolution

of dynamical systems. The training of deep neural nets has an association

with optimal control of dynamical systems. Here, based on our previous

work [1], we introduce a new class of neural ordinary differential equations

with time delay and its training scheme based on an optimal control theory.

We show that an optimally-controlled delay system can perform pattern

recognition only with a few control signals and a single node [1], in contrast

to standard deep neural nets with a huge number of weight parameters and

neurons. The feature of controlled delay equations practically allows for

its simple physical implementations. In this talk, we will introduce an op-

toelectronic neural delay system [2] and a new class of training strategies
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without back-propagation, which is based on direct feedback alignment

(DFA) with correlated randomness [3].

[1] G. Furuhata, T. Niiyama, and S. Sunada, “Physical deep learning

based on optimally controlled dynamical systems,” Phys. Rev. Ap-

plied 15, 034092 (2021).

[2] R. Nogami, K. Kanno, S. Sunada, and A. Uchida, “Experimental

demonstration of physical deep learning based on optimal control using

optoelectronic delay system,” Proc of NOLTA 2022, B3L-C-02 (2022).

[3] In preparation.

16. Andrew Flynn (University College Cork, Ireland)

T. From seeing double to modelling seizure dynamics with multifunctional

reservoir computers

A. In the pursuit of developing artificially intelligent systems there is much

to be gained from dually integrating further physiological features of bio-

logical neural networks and knowledge of dynamical systems into machine

learning environments. In this talk such a two-armed approach is employed

in order to translate ‘multifunctionality’ from biological to artificial neural

networks via the reservoir computing machine learning paradigm. Multi-

functionality describes the ability of a single neural network to perform a

multitude of mutually exclusive tasks by exploiting a form of multistabil-

ity. The dynamics of how a reservoir computer achieves multifunctionality

when tasked with solving the ‘seeing double’ problem are presented. These

results help to identify many new application areas for reservoir comput-

ers which are also explored in this talk including, data-driven modelling of

multistability, generating chaotic itinerancy for memory recall, and recon-

structing dynamical transitions present in the epileptic brain.

17. Tina Mai (Duy Tan University, Vietnam, and Texas A&M University,

US)

T. Prediction of numerical upscaling for Richards equation using deep learning

A. In [Sergei Stepanov, Denis Spiridonov, and Tina Mai. Prediction of numeri-

cal homogenization using deep learning for the Richards equation. Journal

of Computational and Applied Mathematics, 424:114980, 2023. https:

//doi.org/10.1016/j.cam.2022.114980 ], for an unsaturated flow in the

form of nonlinear Richards equation over heterogeneous media, we build
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a new coarse-scale approximation scheme based on numerical homogeniza-

tion. Using deep neural networks (DNNs), this strategy provides frequent

and rapid estimates of macroscopic parameters. To be more precise, during

training a neural network, we employ a training set of random permeabil-

ity realizations and correspondingly computed macroscopic targets (effec-

tive permeability tensor, homogenized stiffness matrix, and right-hand side

vector). Our proposed deep learning approach, which constructs nonlin-

ear maps between such permeability fields and macroscopic properties, is

novel in that it treats the nonlinearity of Richards equation in the pre-

dicted coarse-scale homogenized stiffness matrix. Numerous numerical ex-

periments on problems involving two-dimensional models show how well

this method predicts the macroscopic features and hence solutions.
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