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Program

∗ All lectures are given by invited speakers.

Monday, March 21

16:55 – 17:00 Opening

Session 1 (4 talks) Chair: H. Notsu: JST 17:00 – 20:00

(= UTC 08:00 – 11:00 = CET 09:00 – 12:00 = PST 00:00 – 03:00)

17:00 – 17:50 Peter Ashwin (University of Exeter, UK)

Excitable network attractors and computational properties of recurrent

neural networks

17:50 – 18:00 Break

18:00 – 18:30 Masato Hara and Hiroshi Kokubu (Kyoto University, Japan)

Degenerate reservoir for studying learning mechanism of reservoir com-

puting

18:30 – 19:00 Koichi Taniguchi (Tohoku University, Japan)

Spectral pruning for recurrent neural networks

19:00 – 19:10 Break

19:10 – 20:00 Allen Hart (University of Bath, UK)

Solving PDEs with random neural networks

Tuesday, March 22

Session 2 (4 talks) Chair: M. Kimura and H. Notsu: JST 17:00 – 20:20

(= UTC 08:00 – 11:20 = CET 09:00 – 12:20 = PST 00:00 – 03:20)

17:00 – 17:50 Serhiy Yanchuk (Potsdam Institute for Climate Impact Research

& Humboldt-Universität zu Berlin, Germany)

Deep neural networks using a single neuron: folded-in-time architecture

using feedback-modulated delay loops

17:50 – 18:00 Break
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18:00 – 18:50 André Röhm (The University of Tokyo, Japan)

Model-free inference of unseen attractors using reservoir computing

18:50 – 19:20 Hayato Chiba (Tohoku University, Japan)

Bifurcation of the Kuramoto model on networks based on the generalized

spectral theory

19:20 – 19:30 Break

19:30 – 20:20 Manjunath Gandhi (University of Pretoria, South Africa)

Models from dynamical data: Part I

Wednesday, March 23

Session 3 (4 talks) Chair: H. Notsu: Session 3: JST 17:00 – 20:00

(= UTC 08:00 – 11:00 = CET 09:00 – 12:00 = PST 00:00 – 03:00)

17:00 – 17:30 Tomoyuki Kubota (The University of Tokyo, Japan)

Information processing capacity for reservoir computing

17:30 – 18:00 Kengo Nakai (Tokyo University of Marine Science and Technology, Japan)

Constructing differential equations using only a chaotic time-series

18:00 – 18:10 Break

18:10 – 19:00 Boumediene Hamzi (Imperial College London, UK)

Machine learning and dynamical systems meet in reproducing kernel

Hilbert spaces

19:00 – 19:10 Break

19:10 – 20:00 Manjunath Gandhi (University of Pretoria, South Africa)

Models from dynamical data: Part II

20:00 – 20:05 Closing
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Abstract

T. = Title, A. = Abstract.

1. Peter Ashwin (University of Exeter, UK)

T. Excitable network attractors and computational properties of recurrent

neural networks

A. Recurrent neural networks (RNNs) are input-driven nonlinear dynamical

systems that can be trained to undertake a variety of computational tasks

depending on input. This ranges from simple classification tasks (where it is

desirable to have an echo state property (ESP) such that memory of internal

states are lost) to finite-state computations where internal states need to

be stored at intermediate steps. In this talk I will outline recent work using

excitable network attractors to describe (a) input-dependence of the ESP

and a generalized “echo index” that quantifies the degree of multistability

depending on input (b) design of RNNs with arbitrary excitable network

attractors and (c) use of excitable network attractors to understand coupled

dynamical systems that realise arbitrary Turing machines. (Joint work with

A. Ceni, L. Livi and C. Postlethwaite.)

2. Masato Hara and Hiroshi Kokubu (Kyoto University, Japan)

T. Degenerate reservoir for studying learning mechanism of reservoir comput-

ing

A. We study learning by reservoir computing of chaotic dynamical systems

such as logistic maps. Our previous numerical studies show that, if the

learning of chaotic dynamics is successful, a dynamical system that is

(semi-)conjugate to the target chaotic dynamics is formed in the phase

space of the reservoir. The question then arises as to how there can be

appropriate output weights that provide such a (semi-)conjugacy.

We have recently introduced the idea of “degenerate reservoir” and con-

sidering an ordinary reservoir as its singular perturbation. In this talk, we

will present numerical examples of learning by degenerate reservoir com-

puting of the logistic map, and discuss the existence of output functions

of the degenerate reservoir and its singularly perturbed reservoir that give

(semi-)conjugacies to the target chaotic dynamics.
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3. Koichi Taniguchi (Tohoku University, Japan)

T. Spectral pruning for recurrent neural networks

A. Recurrent neural networks (RNNs) are a class of neural networks used

in sequential tasks. However, in general, RNNs have a large number of

parameters and involve enormous computational costs by repeating the

recurrent structures in many time steps. As a method to overcome this

difficulty, RNN pruning has attracted increasing attention in recent years.

However, most existing methods of RNN pruning are heuristic. In this

talk, we propose a pruning algorithm for RNNs from the viewpoint of

the generalization error bounds, in which we use ”information loss” to

quantify less effective nodes of hidden state of RNNs. Our pruning is

inspired by spectral pruning for DNNs (T. Suzuki, et al., 2020). We also

provide numerical experiments to demonstrate our theoretical results and

show the effectiveness of our pruning method compared with the existing

methods. This talk is based on the joint work with T. Furuya, K. Suetake,

H. Kusumoto, R. Saiin, and T. Daimon (arXiv:2105.10832).

4. Allen Hart (University of Bath, UK)

T. Solving PDEs with random neural networks

A. When using the finite element method, we approximate the solution of a

PDE with a linear combination of basis functions, which are for example:

little hats. In this talk, the basis functions will instead be random functions,

like neural networks with random weights and biases, or Gaussians with

random means and variances. In either case, given a PDE and a random

neural network, we can determine a so-called readout layer that is combined

with the network to approximate the solution. We obtain the readout

layer using linear regression, so that we avoid the non-convex optimisation

involved in training a vanilla neural network. We demonstrate the idea

on 3 problems of escalating difficulty: Poisson’s equation, Schrödinger’s

equation, and then the Navier–Stokes equations.

5. Serhiy Yanchuk (Potsdam Institute for Climate Impact Research &

Humboldt-Universität zu Berlin, Germany)

T. Deep neural networks using a single neuron: folded-in-time architecture

using feedback-modulated delay loops

A. We present a method for folding a deep neural network of arbitrary size

into a single neuron with multiple time-delayed feedback loops [1]. This
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single-neuron deep neural network contains only a single nonlinearity and

appropriately adjusted modulations of the feedback signals. The network

states emerge in time as a temporal unfolding of the neuron’s dynamics.

By adjusting the modulations within the feedback loops, we adapt the net-

work’s connection weights. These connection weights are determined via a

back-propagation algorithm, where both the delay-induced and local net-

work connections must be taken into account. Our approach can fully rep-

resent standard Deep Neural Networks (DNN), encompasses sparse DNNs,

and extends the DNN concept toward dynamical systems implementations.

The new method, which we call Folded-in-time DNN (Fit-DNN), exhibits

promising performance in a set of benchmark tasks.

[1] Stelzer, F., Röhm, A., Vicente, R., Fischer, I., & Yanchuk, S. (2021).

Deep neural networks using a single neuron: folded-in-time architec-

ture using feedback-modulated delay loops. Nature Communications,

12(1), 5164.

6. André Röhm (The University of Tokyo, Japan)

T. Model-free inference of unseen attractors using reservoir computing

A. A reservoir computer can be trained to act as a surrogate for a target

dynamical system using a sample time series. The state-of-the-art for such

autonomous-mode reservoirs can reproduce a large variety of statistical

properties. However, real-world dynamical systems can exhibit more than

one long-term stable dynamical behavior, called an attractor. In this talk,

we will show that a properly trained reservoir computer can not only infer

the dynamics of the target dynamical system in the region from which the

training data was taken, but that valid reconstructions can be obtained

even for unseen attractors - i.e. those for which no time series data was

available in training. These attractors do not even need to share a type,

i.e. a limit cycle could be used to infer the existence of a torus solution.

7. Hayato Chiba (Tohoku University, Japan)

T. Bifurcation of the Kuramoto model on networks based on the generalized

spectral theory

A. For the mean-field limit of a system of globally coupled phase oscillators

defined on networks, a bifurcation from the incoherent state to the partially

locked state at the critical coupling strength is investigated based on the
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generalized spectral theory. This reveals that a network topology affects

the dynamics through the eigenvalue problem of a certain Fredholm integral

operator which defines the structure of a network.

8. Manjunath Gandhi (University of Pretoria, South Africa)

T. Models from dynamical data (Part I & Part II)

A. A discrete-time dynamical system could arise naturally while modeling a

real-world phenomenon or as a time-t map from the flow of an ordinary

differential equation. The left-infinite orbits of a discrete-time dynami-

cal system form what is called the inverse-limit space of the discrete-time

dynamical system. Reservoir computing methods employ driven dynam-

ical systems like recurrent neural networks to map temporal data onto a

different space. The talk would concern using driven dynamical systems

with certain properties to topologically embed the inverse-limit space of a

discrete-time dynamical into a space derived from its state space. Such an

embedding helps obtain equations from data and renders long-term topo-

logically and statistically consistent models from data.

9. Tomoyuki Kubota (The University of Tokyo, Japan)

T. Information processing capacity for reservoir computing

A. Reservoir computing is a framework that utilizes a dynamical system as a

computational resource and has been widely applied to simulated or physi-

cal systems. To date, their computational capabilities have been evaluated

by benchmark tasks; however, these tasks have a problem that its perfor-

mance reflects a part of the capabilities and overlooks the rest of them. In

this presentation, we introduce a computational measure called informa-

tion processing capacity (IPC), which can investigate all the capabilities

of the system without omission—i.e., the IPC is equivalent to a coefficient

of a state expanded with orthonormal polynomials and provides compre-

hensive computational capabilities by expanding with a sufficient number

of polynomials [1]. Finally, to demonstrate the usefulness of the IPC, we

decompose the capabilities of echo state networks that solve the represen-

tative benchmark task called the NARMA10 task. (Joint work with H.

Takahashi and K. Nakajima.)

[1] Tomoyuki Kubota, Hirokazu Takahashi, and Kohei Nakajima. “Unify-

ing framework for information processing in stochastically driven dy-
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namical systems.” Physical Review Research 3.4 (2021): 043135.

10. Kengo Nakai (Tokyo University of Marine Science and Technology,

Japan)

T. Constructing differential equations using only a chaotic time-series

A. We propose a simple method of constructing a system of differential equa-

tions of chaotic behavior based on the regression only from an observable

time-series. The novelty is the introduction of a set of Gaussian radial basis

functions in addition to polynomials to capture local structures. With the

proposed method, the estimated system enables us to reconstruct detailed

statistical behavior as well as to infer short time-series. We apply it to

a time-series of a variable of the well-known chaotic Lorenz system and a

macroscopic fluid variable. This is the joint work with Yoshitaka Saiki and

Natsuki Tsutsumi (Hitotsubashi U.).

11. Boumediene Hamzi (Imperial College London, UK)

T. Machine learning and dynamical systems meet in reproducing kernel

Hilbert spaces

A. Since its inception in the 19th century through the efforts of Poincaré

and Lyapunov, the theory of dynamical systems addresses the qualitative

behaviour of dynamical systems as understood from models. From

this perspective, the modeling of dynamical processes in applications

requires a detailed understanding of the processes to be analyzed. This

deep understanding leads to a model, which is an approximation of the

observed reality and is often expressed by a system of Ordinary/Partial,

Underdetermined (Control), Deterministic/Stochastic differential or

difference equations. While models are very precise for many processes,

for some of the most challenging applications of dynamical systems (such

as climate dynamics, brain dynamics, biological systems or the financial

markets), the development of such models is notably difficult. On the

other hand, the field of machine learning is concerned with algorithms

designed to accomplish a certain task, whose performance improves with

the input of more data. Applications for machine learning methods include

computer vision, stock market analysis, speech recognition, recommender

systems and sentiment analysis in social media. The machine learning

approach is invaluable in settings where no explicit model is formulated,

but measurement data is available. This is frequently the case in many
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systems of interest, and the development of data-driven technologies is

becoming increasingly important in many applications.

The intersection of the fields of dynamical systems and machine learning

is largely unexplored and the objective of this talk is to show that working

in reproducing kernel Hilbert spaces offers tools for a data-based theory of

nonlinear dynamical systems.

In this talk, we use the method of parametric and nonparametric

kernel flows to predict some chaotic dynamical systems. When trained on

geophysical observational data, for example, the weekly averaged global

sea-surface temperature, considerable gains are also observed by the

proposed technique in comparison to classical partial differential equation-

based models in terms of forecast computational cost and accuracy. When

trained on publicly available re-analysis data for the daily temperature

of the North-American continent, we see significant improvements over

classical baselines such as climatology and persistence-based forecast

techniques. Although our experiments concern specific examples, the pro-

posed approach is general, and our results support the viability of kernel

methods (with learned kernels) for interpretable and computationally

efficient geophysical forecasting for a large diversity of processes.

We then show how kernel methods can be used to approximate center

manifolds, propose a data-based version of the centre manifold theorem

and construct Lyapunov functions for nonlinear ODEs. We also introduce

a data-based approach to estimating key quantities which arise in the

study of nonlinear autonomous, control and random dynamical systems.

Our approach hinges on the observation that much of the existing linear

theory may be readily extended to nonlinear systems - with a reasonable

expectation of success- once the nonlinear system has been mapped into

a high or infinite dimensional Reproducing Kernel Hilbert Space. In par-

ticular, we develop computable, non-parametric estimators approximating

controllability and observability energies for nonlinear systems. We apply

this approach to the problem of model reduction of nonlinear control

systems. It is also shown that the controllability energy estimator provides

a key means for approximating the invariant measure of an ergodic,

stochastically forced nonlinear system. We also show how kernel methods

can be used to detect critical transitions for some multi scale dynamical

systems.

This is joint work with Jake Bouvrie (MIT, USA), Matthieu Darcy
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(Caltech), Edward DeBrouwer (KU Leuven), Peter Giesl (University of

Sussex, UK), Christian Kuehn (TUM, Munich/Germany), Jonghyeon Lee

(Caltech), Romit Malik (ANNL), Sameh Mohamed (SUTD, Singapore),

Houman Owhadi (Caltech), Martin Rasmussen (Imperial College Lon-

don), Kevin Webster (Imperial College London), Bernard Hasasdonk and

Dominik Wittwar (University of Stuttgart), Gabriele Santin (Fondazione

Bruno Kessler).
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